

Illinois Environmental Protection Agency

1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276 • (217) 782-3397

Site Remediation Program Form (DRM-2)

(To be Submitted with all Plans and Reports)

You may complete this form in Acrobat, save a copy, print, sign, and mail it to the address above.

I. Site Identification

Site Name: North Kimball Brownfield Site			
Street Address: 1807-1815 N. Kimball Avenue			
City: Chicago	State: IL	Zip Code: 60647	Phone:
Bureau of Land ID Number: 0316225292			
II. Remediation Applicant			
Applicant's Name: Ms. Kimberly Worthington, PE I	LEED AP		
Company: City of Chicago		· · · ·	
Street Address: 30 N. LaSalle, Suite 300			P.O. Box:
City: Chicago	State: IL	Zip Code: 60602	Phone: <u>312-744-9139</u>
Email Address: <u>Kimberly.Worthington@cityofchicago</u>	o.org	-	
I hereby request that the Illinois EPA review and evaluate the attached project documents in accordance with the terms and conditions of the Environmental Protection Act (415 ILCS 5), implementing regulations, and the review and evaluation services agreement. Remediation Applicant's Signature:			
III. Consultant			
Contact's Name: <u>Mr.</u> Matthew Hildreth		an a	
Company: AECOM			
Street Address: 3333 Warrenville Road, Suite 200			P.O. Box:
City: Lisle	State: IL	Zip Code: <u>60532</u>	Phone: 630-829-2692
Email Address: matthew.hildreth@aecom.com		-	

IV. Professional Engineer's or Geologist's Seal or Stamp

Documents Submitted

Site Investigation Report - Comprehensive	Remedial Action Completion Report
Site Investigation Report - Focused	Sampling Plan
Remediation Objectives Report - Tier 1 or 2	Dry Cleaner Trust Fund - Budget
Remediation Objectives Report - Tier 3	Dry Cleaner Trust Fund - Reimbursement Request
Remedial Action Plan	Other:

I attest that all site investigations or remedial activities that are subject of this plan(s) or report(s) were performed under my direction, and this document and all attachments were prepared under my direction or reviewed by me, and to the best of my knowledge and belief, the work described in the plan and report has been designed or completed in accordance with the Illinois Environmental Protection Act (415 ILCS 5), 35 Ill. Adm. Code 740, and generally accepted engineering practices or principles of professional geology, and the information presented is accurate and complete.

Any person who knowingly makes a false, fictitious, or fraudulent material statement, orally or in writing, to the Illinois EPA commits a Class 4 Felony. A second or subsequent offense after conviction is a Class 3 felony. (415 ILCS 5/44(h))

Engineer's or Geologist's Name:	Laura C. Drumm	
Company:	AECOM	
Registration Number:	062053339	
Phone:	312-861-4029	
License Expiration Date:	11/30/2021	
Signature:	Haura C. Om	Date: 3/31/2021

Note: The authority of a Licensed Professional Geologist to certify documents submitted to the Illinois Environmental Protection Agency for review and evaluation pursuant to Title XVII of the Environmental Protection Act is limited to Site Investigation Reports (415 ILCS 58.7(f), as amended by P.A. 92-0735, effective July 25, 2002. A Licensed Professional Geologist cannot certify to Remediation Objectives Reports, Remedial Action Plans or Remedial Action Completion Reports.

Prepared for: City of Chicago Chicago, Illinois Prepared by: AECOM Lisle, Illinois 60623205 March 2021

Comprehensive Site Investigation Report, Remediation Objectives Report, and Remedial Action Plan

North Kimball Brownfield Site 1807-1815 N. Kimball Avenue Chicago, Illinois

Prepared for: City of Chicago Chicago, Illinois Prepared by: AECOM Lisle, Illinois 60623205 March 2021

Comprehensive Site Investigation Report, Remediation Objectives Report, and Remedial Action Plan

North Kimball Brownfield Site 1807-1815 N. Kimball Avenue Chicago, Illinois

Prepared By: Hilary Taghap

Matter

Reviewed By: Matthew Hildreth, P.G.

Contents

Executive SummaryES-1			
1.0	Introd	uction	1
	1 1	Provious Penarte and Sources Peviewed	1
	1.1	1 1 1 Recognized Environmental Conditions	י 1
		1.1.2 Phase II ESAs, CSIR and Additional Investigation	2
2.0	Site C	haracterization	1
	2.1	Site Description	1
	2.2	Site Geology2-2	1
		2.2.1 Site Hydrogeology2-2	2
		2.2.2 Groundwater Classification2-2	2
		2.2.3 Potential Migration Pathways2-2	2
		2.2.4 Current and Post Remediation Use of the Site2-2	2
	2.3	Site History2-3	3
	2.4	Remediation Site Base Map2-3	3
	2.5	Well Search2-4	4
	2.6	Legal Description or Reference to a Plat2-4	4
3.0	Site S	pecific Sampling Plan3-1	1
4.0	Docun	nentation of Field Activities 4-1	I
	4.1	Subsurface Investigation – November 20184-7	1
5.0	Result	s and Observations	1
	5.1	Soil Analytical Results	1
	5.2	Groundwater Analytical Results	2
	5.3	Soil Gas Analytical Results5-2	2
6.0	Endan	germent Assessment 6-1	1
	6.1	Extent of Affected Media Evaluation	1
		6.1.1 Extent of Affected Soil	1
		6.1.2 Extent of Affected Groundwater	3
	6.2	Soil Exposure Routes Evaluation6-4	4
	6.3	Groundwater Exposure Route Evaluation6-6	3

	6.4	Indoor Inhalation Exposure Route Evaluation	6-6
7.0	Reme	diation Objectives Report	7-1
	7.1	Tier 2 Evaluation	7-1
	7.2	Soil Remediation Objectives	7-2
	7.3	Groundwater Remediation Objectives	7-2
	7.4	Soil Gas Remediation Objectives	7-2
	7.5	Exposure Route Exclusion	7-2
8.0	Reme	dial Action Plan	8-1
	8.1	Selected Remedial Technologies	8-1
		8.1.1 In-Situ Treatment	8-1
		8.1.2 Engineered Barriers	8-2
	8.2	Remedial Action Feasibility, Schedule, and Effectiveness	8-2
	8.3	Confirmation Sampling and Analysis Plan	8-3
	8.4	Current and Post-Remediation Use of the Property	
	8.5	Completion of Remediation Activities	8-3
9.0	CSIR	ROR RAP Summary and Conclusions	
10.0	Refer	ences	10-1

List of Appendices

- Appendix A Previous Investigations
- Appendix B Potable Well Survey Documents
- Appendix C Legal Description
- Appendix D EDI Field Work Summary
- Appendix E Csat Calculations
- Appendix F Tier 2 Calculations

List of Tables

- Table 1 Groundwater Elevation Summary
- Table 2-1 2018 Investigation Sample and Analysis Summary
- Table 2-2 Comprehensive Soil Sample and Analysis Summary
- Table 3-1 Summary of Soil Tier 1 Residential Remediation Objective Exceedances
- Table 3-2 Summary of Soil Tier 1 Construction Worker Remediation Objective Exceedances
- Table 3-3 Summary of Soil Component of Groundwater Ingestion Remediation Objective Exceedances
- Table 4-1 Summary of Groundwater Ingestion Remediation Objective Exceedances
- Table 4-2 Summary of Groundwater Indoor Inhalation Remediation Objective Exceedances
- Table 5 Summary of Soil Gas Remediation Objective Exceedances
- Table 6 Csat Summary Tables
- Table 7 Summary of Tier 2 Residential Remediation Objective Exceedances
- Table 8 Summary of Proposed Remedial Action

List of Figures

- Figure 1 Site Location Map
- Figure 2 Site Base Map
- Figure 3 Soil Sample and Groundwater Well Location Map
- Figure 4-1 Soil Samples Exceeding Tier 1 Residential Ingestion SROs: VOCs
- Figure 4-2 Soil Samples Exceeding Tier 1 Residential Ingestion SROs: PAHs
- Figure 4-3 Soil Samples Exceeding Tier 1 Residential Ingestion SROs: Metals
- Figure 5 Soil Samples Exceeding Tier 1 Residential Inhalation SROs: VOCs
- Figure 6-1 Soil Samples Exceeding Tier 1 Construction Worker Ingestion SROs: VOCs
- Figure 6-2 Soil Samples Exceeding Tier 1 Construction Worker Ingestion SROs: Metals
- Figure 7-1 Soil Samples Exceeding Tier 1 Construction Worker Inhalation SROs: VOCs
- Figure 7-2 Soil Samples Exceeding Tier 1 Construction Worker Inhalation SROs: Metals
- Figure 8-1 Soil Samples Exceeding Tier 1 Soil Component of the Groundwater Ingestion SROs: VOCs
- Figure 8-2 Soil Samples Exceeding Tier 1 Soil Component of the Groundwater Ingestion SROs: PAHs
- Figure 8-3 Soil Samples Exceeding Tier 1 Soil Component of the Groundwater Ingestion SROs: Metals
- Figure 9-1 Groundwater Samples Exceeding Tier 1 Groundwater Ingestion GROs: VOCs
- Figure 9-2 Groundwater Samples Exceeding Tier 1 Groundwater Ingestion GROs: Metals
- Figure 10 Groundwater and Soil Gas Samples Exceeding Tier 1 Indoor Inhalation GROs: VOCs
- Figure 11 Summary of TCE Soil Concentrations and Proposed TCE Csat Remediation Area
- Figure 12 Summary of Residential SRO Exceedances and Potential Engineered Barriers

Executive Summary

The City of Chicago Department of Assets, Information and Services (AIS) contracted with AECOM Technical Services, Inc. (AECOM) to complete a Comprehensive Site Investigation and subsequent Illinois Environmental Protection Agency (IEPA) Site Remediation Program (SRP) reporting for the property located at 1807-1815 N. Kimball Avenue, Chicago, Illinois (the "Site"), which is enrolled in the SRP under the Site name "North Kimball Brownfield Site", and LPC # 0316225292.

The Site is mostly vacant with some portions covered in concrete and some portions covered in grass/soil. Following remediation, the City intends to redevelop the Site as a public park that will connect to the adjacent Bloomingdale Trail, allowing it to serve as an access point to the elevated greenway and multi-use recreational path (The 606).

Subsurface environmental investigations, including Phase II ESAs and sampling associated with the CSIR and recent, additional investigations were completed for this Site and its adjacent properties between August 2010 and October 2018. The horizontal and vertical extent of contamination has been delineated on the Site, with the exception of soil gas and groundwater concentrations exceeding indoor inhalation ROs at the eastern site boundary. Offsite soil gas delineation to address this on the east adjacent property is ongoing. The data collected is sufficient to characterize the nature and extent of impact present at the Site.

A TACO Tier 1 soil and groundwater evaluation was completed as part of the Endangerment Assessment presented in Section 6. Based on that evaluation, COC concentrations at the Site exceeded Tier 1 SROs for the residential ingestion and outdoor inhalation exposure routes, construction worker ingestion and inhalation exposure routes, and soil component to groundwater ingestion exposure route. Concentrations of TCE exceeded Csat values in several soil samples located on the east portion of the Site (TCE Source Area). COC concentrations at the Site exceeded the Tier 1 GROs for the Class II groundwater ingestion exposure route and the residential indoor inhalation exposure route.

Proposed SROs for COCs are the TACO Tier 1 SROs for residential properties in 35 IAC 742. Appendix B, Table A, and Appendix B, Table D (pH-specific SROs) with the exception of the calculated Tier 2 SROs listed below for cPAHs.

Constituent	Tier 2 SRO – Ingestion (mg/kg)
	Residential
Benzo(a)anthracene	8.5
Benzo(a)pyrene	1.3*
Benzo(b)fluoranthene	8.5
Dibenz(a,h)anthracene	0.85
Indeno(1,2,3-cd)pyrene	8.5

*The calculated Tier 2 value for benzo(a)pyrene is less than the background value. The background value is the selected RO.

defined in 35 IAC 742, Appendix B, Table E and H.

The Soil Gas Remediation Objectives for the site will be the TACO Tier 1 SGROs as defined in 35 IAC 742, Appendix B, Table G and H.

The steps to cleanup and redevelop this site include TCE source area remediation, engineered barrier installation and institutional control implementation. The first phase of remediation, funded in part by a USEPA Brownfields Cleanup Grant, will include in-situ treatment of the TCE Source Area. An Interim RACR documenting the TCE source area remediation activities will be submitted for IEPA review and approval following completion of that step. Current conditions at the Site do not meet the requirements for pathway exclusion. Following TCE source remediation, the requirements will be evaluated again to confirm pathway exclusion and the use of engineered barriers and institutional controls. Following the later completion of engineered barriers (expected to be completed during site redevelopment), a final RACR will be submitted which will include a request for a Comprehensive No Further Remediation letter.

1.0 Introduction

The City of Chicago Department of Assets, Information and Services (AIS) contracted with AECOM Technical Services, Inc. (AECOM) to complete Remedial Site Investigation and subsequent Illinois Environmental Protection Agency (IEPA) Site Remediation Program (SRP) reporting for the property located at 1807-1815 N. Kimball Avenue, Chicago, Illinois (the "Site"), which is enrolled in the SRP under the Site name "North Kimball Brownfield Site", and LPC # 0316225292. In accordance with SRP regulations, because the City of Chicago seeks a Comprehensive NFR for the Site, the initial investigation included analysis of soil and groundwater for the Target Analyte List (TAL), including volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), TAL metals, pesticides, herbicides, and polychlorinated biphenyls (PCBs).

1.1 Previous Reports and Sources Reviewed

The following previous environmental investigations have been completed for this Site and its adjacent properties:

- Clean World Engineering, Ltd. (CWE), 2010, Phase I ESA Report, 1807-1815 North Kimball Avenue, Chicago, Illinois, April 2010
- Brecheisen Engineering, Inc. (Brecheisen), 2010, Phase II ESA, 1807-1815 North Kimball Avenue, Chicago, Illinois, September 2010
- Weston Solutions, Inc. (Weston), 2012, Comprehensive Site Investigations Report (CSIR), 1807-1815 North Kimball Avenue, Chicago, Illinois, July 2012
- Terracon Consultants, Inc. (Terracon), 2012, Phase I Environmental Site Assessment (ESA), 1809-1815 North Kimball Avenue, Chicago, Illinois, August 2012
- Terracon, 2013, Phase II Site Investigation Summary, 1809 North Kimball Avenue, Chicago, Illinois, January 2013

These previous environmental investigations are further described in the following sections.

1.1.1 Recognized Environmental Conditions

The following recognized environmental conditions (RECs) were identified based on the Phase I ESA Reports, prepared by Northern (2003), CWE (2010), and Terracon (2012):

- Long term historical Site uses that included metals, painting, automobile or other warehousing, lumber storage and warehousing, storage operations and other industrial uses assumed to be associated with historic and adjoining Site operations by ELC, ALMC, Compco and others.
- Records for two heating oil underground storage tanks (USTs) (23,000-gallon and 25,000-gallon) installed on the eastern adjacent property in 1952 were identified, with no documentation on the disposition.
- Listings of the eastern adjacent property a Resource Conservation and Recovery Act (RCRA) Small Quantity Generator (SQG) of hazardous waste and a RCRA non-generator.

- Light industrial facility (manufactured fluorescent light bulbs and fixtures) adjoining to the east is listed as a former small quantity RCRA generator facility,
- History of long term uses that include lumber storage and warehousing and storage operations,
- Documented soil and groundwater contamination onsite, documented onsite fill material, and
- Potential for USTs located southeast of the site.

Based on the historical Site use and RECs, the primary sources of contamination are likely derived from paint, lumber, and automobile warehouse operations at the Site, urban fill, potential petroleum releases from two heating oil USTs (23,000-gallon and 25,000-gallon) installed on the eastern adjacent Site in 1952, and potential historical releases from the Site and adjacent property formerly occupied by ELC, ALMC, Compco and others.

1.1.2 Phase II ESAs, CSIR and Additional Investigation

Subsurface environmental investigations, including the Phase II ESAs and sampling associated with the CSIR and recent, additional investigations were completed for this site and its adjacent properties between August 2010 and October 2018. The 2012 CSIR, completed by Weston, was funded under a Targeted Brownfields Assessments (TBA) Grant and the 2013 Terracon Phase I and Phase II ESAs were funded under the City's 2008 Hazardous and Petroleum Area Wide Assessment Grant.

Investigation	Scope of Work	Results
Brecheisen 2010,	Advancement of eight soil borings to	Soil analytical results exceed applicable
Phase II ESA,	depths of 6 to 24 feet	Illinois Tiered approach to corrective
1807-1815 N Kimball	Collection of soil samples	action objectives (TACO) Soil
Ave	Installation of three monitoring wells	Remediation Objectives (SROs) for
	Collection of groundwater samples	SVOCs and Metals
		Groundwater analytical exceed applicable
		Class II Groundwater Remediation
		Objectives (GROs) for VOCs and metals
Weston, 2012,	Advancement of ten soil borings to a	Soil analytical results exceed applicable
CSIR, 1807-1815 N	maximum depth of 20 feet	Illinois TACO SROs for VOCs and SVOCs
Kimball Ave	Collection of soil samples including	Groundwater analytical exceed applicable
	fraction of organic carbon analyses	Class II GROs for VOCs
	Collection of groundwater samples, field	
	parameters and hydraulic conductivity	
Terracon, 2013,	Advancement of five soil borings to	Soil analytical results exceed applicable
Phase II Site	depths of 15 to 30 feet	Illinois TACO SROs for VOCs and SVOCs
Investigation	Collection of soil samples	Soil gas analytical results exceed Tier 1
Summary, 1809 N	Collection of six soil gas samples	ROs for Residential Indoor Inhalation for
Kimball Ave	Installation of four monitoring wells	VOCs
	Collection of groundwater samples	Groundwater analytical exceed applicable
		Class II GROs for VOCs

The scope of work and results of each of these investigations are summarized below:

The investigations listed above found that concentrations of VOCs, SVOCs, and inorganics in soil at the site exceeded applicable Illinois TACO SROs, and trichloroethene (TCE) concentrations in some soil on the eastern portion of the Site exceeded the C_{sat} limit. Groundwater results from the site investigations exceeded the applicable Class II Groundwater Remediation Objectives (GROs). Soil gas samples at two locations-exceeded Tier 1 Remediation Objectives (ROs) for Indoor Inhalation for residential properties for TCE, and at one location also for vinyl chloride.

A summary of the analytical results from prior Site investigations, including the Phase II ESAs and the 2012 CSIR sampling event are provided in **Appendix A.**

2.0 Site Characterization

2.1 Site Description

The Site occupies three parcels (PINs 13-35-409-037, 13-35-409-039, 13-35-409-042) in the northwestern portion of Chicago, Illinois, and is located adjacent to residential properties to the north and to the east, Kimball Avenue to the west, and The Bloomingdale Trail to the south. The Bloomingdale Trail is an elevated greenway constructed on a former railroad running east-west on the northwest side of Chicago that forms the main line of a park and trail network called The 606. The Site is secured by a fence, with locked gate access along N. Kimball Avenue. The location of the Site is depicted on **Figure 1**.

The Site encompasses approximately 0.4 acres and is mostly vacant with some portions covered in concrete and some portions covered in grass/soil. The Site's topography is generally flat on the northern and eastern portions, with a sloped embankment connecting the Site to the Bloomingdale Trail (approximately 15 to 16 feet above the Site grade).

The closest surface water body is a small pond in Humboldt Park approximately 0.75 miles southeast of the Site. The north branch of the Chicago River is approximately 2.8 miles east of the Site. The North Branch of the Chicago River flows south into the Chicago Sanitary and Ship Canal, away from Lake Michigan. Lake Michigan is approximately 4.5 miles east of the Site. Lake Michigan is the sole source of the City of Chicago's drinking water.

2.2 Site Geology

According to the Surficial Geology Map of the Chicago Region (Willman and Lineback, 1970), the site is located within an area composed of Wisconsin-age glacial lake deposits (the Yorkville member of the Wedron Formation). These deposits are typically grey to dark grey clayey till, with silty clayey till in some locations, abundant small pebbles, and local lenses of silt, with less commonly seen lenses of sand and gravel.

The thickness of the Pleistocene-age deposits in the area is between 25 and 50 feet, according to the online ISGS Glacial Drift Thickness and Character Map (ISGS, 1998). The bedrock underlying the site is Silurian-age dolomite, which is documented to be quite extensive in the Chicago-land region, with thicknesses of several hundred feet (Kolata, 2005).

Soil beneath the site as described in the Weston CSIR consists of fill material including crushed concrete, gravel, and sand underlain by native material consisting primarily of silty clay (Weston, 2012). In 2018, deeper soil borings performed by EDI and overseen by AECOM, primarily in the eastern portion of the Site, identified clay/silty clay below shallow fill, followed by one to two-foot intervals of sandy clay/clayey sand, below which was clay/silty clay to the bottom of the soil borings at approximately 30 ft bgs.

The topography of the site is relatively flat with a sloping embankment to the southwest of the Site. The elevation of the flat portion of the Site is between 600 and 605 ft above mean sea level (amsl).

2.2.1 Site Hydrogeology

Hydrogeologic conditions at the Site were evaluated by Weston and Terracon and described in the 2012 CSIR and 2013 Phase II ESA, respectively. Weston installed three, two inch monitoring wells (KP-MW01, KP-MW-02, and KP-MW-03) in May 2012. Slug tests were performed on the three wells using rising and falling head tests. The results indicated hydraulic conductivity ranging from 2.8×10^{-4} to 8.4×10^{-7} centimeters per second (cm/s) with a geometric mean of 1.3×10^{-5} cm/sec.

Terracon installed four additional monitoring wells MW-04, MW-05, MW-06, and MW-07 in August 2012. Terracon surveyed the wells and presented a potentiometric map showing groundwater flow direction to the southwest.

Water levels measured in the monitoring wells in November 2018 indicate depth to groundwater varies across the site from approximately 5 to 20 feet below ground surface (bgs). Groundwater elevations measured at the Site suggest that groundwater generally flows south/southwest across the Site consistent with results presented by Terracon. **Table 1** provides well construction details and a summary of groundwater levels for the Site.

2.2.2 Groundwater Classification

At the Site, depth to groundwater in the monitoring wells ranged from approximately 5 to 20 feet bgs. As discussed in the Weston CSIR, the hydraulic conductivity calculated for the site $(1.3 \times 10^{-5} \text{ cm/sec})$ is less than 1×10^{-4} cm/sec based on the geometric mean (Weston, 2012). In accordance with 35 IAC Section 620.210, groundwater underlying the Site is not considered Class I (Potable Resource Groundwater) and is therefore considered Class II (General Resource Groundwater).

2.2.3 Potential Migration Pathways

The potential migration pathways at the Site are through natural pathways (i.e. soil and groundwater).

There are no rivers, streams, or other surface water bodies within 1,000 feet of the Site. The closest surface water body is a small pond in Humboldt Park approximately 0.75 miles southeast of the Site. The north branch of the Chicago River is approximately 2.8 miles east of the Site. The North Branch of the Chicago River flows south into the Chicago Sanitary and Ship Canal, away from Lake Michigan. Lake Michigan is approximately 4.5 miles east of the Site. Lake Michigan is the sole source of the City of Chicago's drinking water.

2.2.4 Current and Post Remediation Use of the Site

The Site is currently mostly vacant with some portions covered in concrete and some portions covered in grass/soil. Following the multi-phased remediation described in the Executive Summary and Conclusions sections of this report the Site is intended to be redeveloped as a public park that will connect to the adjacent Bloomingdale Trail, allowing it to serve as an access point to the elevated greenway and multi-use recreational path (The 606).

2.3 Site History

The City of Chicago acquired the Site in 2005 through foreclosure. Prior to the City of Chicago's ownership, land use at the site was primarily industrial. The known historic uses of the Site based on historic fire insurance maps are provided below:

- In 1896, the Site was utilized as a lumberyard for the Elsmere Lumber Company (ELC) and contained a single-family dwelling on the northern portion.
- By 1921, the Site was vacant, and a concrete retaining wall existed along the southern Site boundary. Railroad spurs from the Chicago, Milwaukee, and St. Paul railroad were present to the south.
- By 1950, American Laundry Machinery Company (ALMC), which had occupied the eastern adjacent property, expanded to occupy the Site. Historical operations at ALMC included woodworking, testing, painting, crating, shipping, lumber storage, casting storage, and machine shop operations.
- By 1975, the Compco Corporation (Compco) was present in place of ALMC in the vicinity of the Site and the eastern adjacent site. Compco is described on the 1975 Sanborn Map as "Manufacturers of Fluorescent Fixtures."
- By 2003, the Site was vacant. Two small structures were demolished by the City of Chicago, one in 2001, and one in 2002/2003.

The Site was occupied for nearly a century by industrial and manufacturing operations associated with ELC, ALMC, Compco and others that occurred on the Site and the adjoining east and south properties. The property to the west (across North Kimball Avenue) was historically industrial until recent development as a multi-family apartment complex. The properties to the north have historically been single-family residential.

2.4 Remediation Site Base Map

The Remediation Site Base Map is attached as **Figure 2**. In accordance with 35 IAC Part 740, the map shows the following:

- 1. A distance of at least 1,000 feet around the remediation site at a scale no smaller than one inch equal to 200 feet;
- 2. Map scale, north arrow orientation, date, and location of the site with respect to township, range, and section;
- 3. Remediation site boundary lines, with the owners of property adjacent to the remediation site clearly indicated, if reasonably identifiable; and
- 4. Surrounding land uses (e.g., residential property, industrial/commercial property, agricultural property, and conservation property).

2.5 Well Search

A potable water well survey was performed to locate and identify community water supply (CWS) wells and other potable wells (private, semi-private, and non-community water supply wells) within a minimum distance of 1,000 feet (ft) from the Site in accordance with 35 IAC 740.425(b)(2)(D). The search for CWS wells was extended to 2,500 feet in accordance with 1600.210(a) guidelines.

The following potable water well database sources were searched and reviewed as part of the potable well survey: (1) IEPA Source Water Assessment Program (SWAP); (2) Illinois State Geological Survey (ISGS) Digital Water Well Records; and (3) Illinois State Water Survey (ISWS) Domestic Well Database.

The IEPA SWAP Mapping Tool was used to search the location of CWS, Non-CWS and ISGS wells within 1,000 ft of the Site. The map generated from this online search is provided in **Appendix B**. The potable well search did not identify any ISGS, non-CWS wells, or CWS wells within 1,000 feet of the Site, and the Site is not located within a CWS wellhead protection area. There are no CWS wells located within 2,500 ft of the Site.

The ISWS database provides information on well locations based on a 10-Acre Plot Location System. No domestic wells were identified in the database within the same Section, Township and Range as the Site. The ISWS search results are provided in **Appendix B**.

In addition, a Water Well Survey conducted in 2007 by the former City of Chicago Department of Environment reviewed well records provided by the ISGS and the City's Department of Water Management. The 2007 Well Survey included the evaluation of CWS, non-CWS and approximately 1,400 private well records. The Potable Well Map prepared by the City of Chicago in 2009 as a result of the 2007 survey confirms there are no potable wells at or near the Site. The Potable Well Map (Chicago, 2009) is provided in **Appendix B**.

2.6 Legal Description or Reference to a Plat

The Site is made up of three parcels of land identified by Parcel Identification Numbers (PINs) PINs 13-35-409-037, 13-35-409-039, 13-35-409-042.

The property is located in Section 35, Township 40 North, and Range 13 East. A legal description of the Site is provided in **Appendix C**.

3.0 Site Specific Sampling Plan

A subsurface investigation was conducted in November 2018 to fill data gaps and further evaluate soil, groundwater, and soil gas at the Site, including further evaluating the distribution of TCE exceeding Csat in soil in the eastern portion of the Site for remediation planning purposes. The investigation included the advancement of 22 soil borings (DB-01 through DB-22) to a maximum depth of 30 feet. Two to four soil samples were collected from each soil boring location for a total of 66 total soil samples. Soil samples were submitted to STAT Analysis Corporation (STAT) for VOCs, SVOCs/PAHs, metals, waste characterization parameters, total oxidant demand (TOD), and/or fraction of organic carbon (foc). Four of the 66 total samples were submitted for the complete target analyte list (TAL) which includes VOCs, SVOCs, metals, pesticides, and polychlorinated biphenyls.

Groundwater samples were collected from four existing, two-inch monitoring wells (KP-MW02, MW-4, MW-5, and MW-6) using the low-flow sampling method. Groundwater samples were submitted to STAT for TAL analysis.

Four semi-permanent soil gas implants (SV-07 through SV-10) were installed to a depth of four feet bgs. Four soil gas samples were collected and submitted for VOC analysis.

4.0 Documentation of Field Activities

4.1 Subsurface Investigation – November 2018

On November 5 through 8, 2018, Earth Solutions, Inc. (Earth Solutions) advanced 22 soil borings (DB-01 through DB-22) to a depth of 30 feet below ground surface (bgs) at the Site. Environmental Design International (EDI) provided direction and oversight. The soil borings were advanced to fill data gaps and evaluate soil at the Site. Two to four soil samples were collected from each boring including duplicate and quality control/assurance samples.

Soil borings were advanced using direct push techniques with a Geoprobe drill rig with 5-foot long, 2-inch diameter Macro-core sample liners. A new liner was used for each sample interval and the probes were decontaminated before each use with an Alconox® and potable water solution. Soil samples were screened with a photoionization detector (PID) with measurements documented on the soil boring logs. An EDI environmental scientist visually inspected and documented characteristics of the environmental soil samples in accordance with the Unified Soil Classification System. Samples were placed on ice and submitted to STAT Analysis Corporation (STAT), Chicago, Illinois under proper chain of custody procedures.

Soil samples were analyzed using the following analytical methods:

- VOCs by USEPA Method 8260;
- SVOCs/Polycyclic aromatic hydrocarbons (PAHs) by USEPA Method 8270C;
- TAL metals by USEPA Method 6020/7471;
- Cyanide by USEPA Method 9012A;
- Soil pH by USEPA Method 9045C;
- PCBs by USEPA method 8082; and
- Pesticides by USEPA method 8081.

Groundwater samples were analyzed using the following analytical methods:

- VOCs by USEPA Method 8260;
- SVOCs/Polycyclic aromatic hydrocarbons (PAHs) by USEPA Method 8270C;
- TAL metals/RCRA metals by USEPA Method 6020/7471;
- Cyanide by USEPA Method 9012A;
- PCBs by USEPA method 8082; and
- Pesticides by USEPA method 8081.

Soil gas samples were analyzed using the following analytical method:

• VOCs by TO-15.

In addition, two soil samples (DB211820 and DB212325) were analyzed for organic carbon content by ASTM method D 2974. One composite soil sample was analyzed for the Illinois "Green Sheet" to evaluate soil for future waste characterization purposes, and a composite soil sample was submitted to AECOM's Austin, Texas treatability laboratory for the completion of a bench-scale pilot test to evaluate TCE treatability using chemical oxidizing agents. A detailed sampling and analysis summary is provided in **Table 2-1**. The soil boring, monitoring well, and soil gas sample locations are included in **Figure 3**. A comprehensive summary table including soil sample depth and analysis for soil samples collected during the 2018 investigation as well as previous 2010, 2012, and 2013 investigations is provided in **Table 2-2**.

Additional details of the 2018 Investigation are included in the January 14, 2019 Field Work Summary prepared by EDI and attached to this report as **Appendix D**.

5.0 Results and Observations

In this section, the soil and groundwater analytical results from the 2018 Investigation are summarized and compared to the most stringent cleanup objectives given in 35 IAC Part 742, Tiered Approach to Corrective Action Objectives (TACO). The analytical results were compared to the TACO Tier 1 soil remediation objectives (SROs) for the ingestion and inhalation exposure routes for construction workers and residential receptors, and to the soil migration to Class II groundwater ingestion exposure routes for all applicable chemical constituents. Groundwater results are compared to the Class II TACO Tier 1 Groundwater Remediation Objectives (GROs) for the Groundwater Ingestion Route and the Tier 1 GROs for the Indoor Inhalation Exposure Route found in Section 742, Appendix B, Table H. Soil Gas samples were compared to residential soil gas remediation objectives (SGROs) for the Groundwater Ingestion Route and the Tier 1 GROs for the Indoor Inhalation Exposure Route found in Section 742, Appendix B, Table H. The rationale for the groundwater classification is provided in Section 2.2.2. A discussion of exposure routes is given in Section 6.0, and the Remediation Objectives for the Site are presented in Section 7.0.

5.1 Soil Analytical Results

The soil analytical results were compared to the most stringent IEPA TACO Tier 1 SROs for the ingestion, inhalation, and soil component of the groundwater ingestion exposure routes. This includes the PAH background values established for Metropolitan Areas and included in TACO, Appendix A, Table H.

Soil samples were collected at depths ranging from 10 to 28 feet to fill data gaps as part of the 2018 Subsurface Investigation. Concentrations of SVOCs, pesticides and PCBs were below laboratory detection limits in soil samples collected during the 2018 Investigation. Detected metal concentrations were below the most stringent Tier 1 SROs. Three analytes (cis-1,2 dichloroethene, trichloroethene, and vinyl chloride) were detected at concentrations above the most stringent Tier 1 SROs in one or more soil samples collected during the 2018 investigation. The remaining VOC concentrations were below Tier 1 SROs.

The cis-1,2-dichloroethene concentration detected in one soil sample, DB-18 (10-12), collected from soil boring DB-18 (10-12 ft bgs) was above the Tier 1 soil component of the groundwater ingestion ROs. The cis-1,2-dichloroethene concentrations were below laboratory detection limits in the deeper samples collected from soil boring DB-18 (16-18 ft and 22-24 ft bgs).

The vinyl chloride concentration detected in one soil sample, DB-06 (14-16), collected from soil boring DB-06 (14-16 ft bgs) was above the Tier 1 residential outdoor inhalation RO. The vinyl chloride concentration was below the laboratory detection limit in the deeper sample collected from soil boring DB-16 (22-24 ft bgs).

Trichloroethene (TCE) concentrations in four soil samples: DB-09 (11-13), DB-11 (12-14), and DB-18 (10-12), were above the Tier 1 residential ingestion/inhalation, construction worker ingestion/inhalation and the soil component of the groundwater ingestion ROs. TCE concentrations in deeper samples collected at each of these soil boring locations were below Tier 1 SROs. The TCE concentration in one additional sample, DB-17 (12-14), was also above the residential ingestion/inhalation, construction worker inhalation, and soil component of groundwater ingestion. The TCE concentration

in DB-17 (12-14) was below the construction worker ingestion SRO. TCE concentrations in the deeper samples collected from DB-17 were below Tier 1 SROs.

Analytical results for the 2018 investigation are summarized in tables included in the investigation summary documents provided in **Appendix D**. A summary of analyte concentrations detected above Tier 1 SROs during the 2018 Investigations is provided along with previous investigation exceedances in **Tables 3.1** to **3.3**. Sample locations are provided in **Figure 3**. **Figures 4** through **8** identify soil sample locations (including locations sampled during previous investigations) that exceeded Tier 1 ROs.

5.2 Groundwater Analytical Results

Four groundwater samples were collected during the 2018 Investigation from groundwater monitoring wells KP-MW-02, MW-04, MW-05, and MW-06.

Groundwater Ingestion Exposure Route

The groundwater analytical results were compared to the IEPA TACO Tier 1 GROs for Class II groundwater.

SVOCs, pesticides, and PCBs concentrations were below laboratory detection limits in groundwater samples collected during the 2018 investigation. Detected metal concentrations were below Class II Tier 1 GROs.

The following summarizes VOC concentrations above Tier 1 Class II GROs:

- KPMW02: 1,2-dichloroethane, 1,1-dichloroethene, cis-1,2dichloroethene, trans-1,2dichloroethene, tetrachloroethene, 1,1,2-trichloroethane, trichloroethene, and vinyl chloride
- MW5: trichloroethene
- MW6: cis-1,2dichloroethene, trichloroethene, and vinyl chloride

Analytical results are summarized in tables included in the investigation summary documents provided in **Appendix D**. A summary of analyte concentrations detected above Tier 1 GROs during the most recent groundwater sample collected at each location is provided in **Table 4**. Sample locations are provided in **Figure 3**, and **Figures 9** and **10** identify groundwater sample locations that exceeded Tier 1 ROs.

5.3 Soil Gas Analytical Results

The soil gas analytical results were compared to the Outdoor Inhalation and Indoor Inhalation Exposure Route ROs for residential properties found in Section 742, Appendix B, Tables G and H (Diffusion and Advection). Trichloroethene and vinyl chloride concentrations detected in SV-09 exceeded Tier 1 ROs for indoor inhalation.

Analytical results are summarized in tables included in the investigation summary documents provided in **Appendix D**. Sample locations are provided in **Figure 3**, and **Figure 10** identifies soil vapor points that exceeded Tier 1 ROs.

6.0 Endangerment Assessment

The horizontal and vertical extent of contamination has been delineated on the Site, with the exception of soil gas and groundwater exceeding indoor inhalation ROs at the eastern Site boundary. Offsite delineation of VOCs in soil gas on the adjacent property to the east is ongoing. The data collected is sufficient to characterize the nature and extent of impact present at the Site. Soil and groundwater impacts are described below in more specific terms.

Pursuant to TACO, potential risks to human health and the environment resulting from soil or groundwater impacts were evaluated by assessing the following modes of potential exposure: Soil Ingestion, Soil Inhalation, Indoor Inhalation, and Groundwater Ingestion (via the soil and groundwater components). The Site is planned to be redeveloped as a public park that will connect to the adjacent Bloomingdale Trail, allowing it to serve as an access point to the elevated greenway and multi-use recreational path (The 606). The following assessment compares analytical results to the applicable Tier 1 ROs for the Residential and Construction Worker Receptors. The results of the Exposure Route Evaluation are discussed below.

6.1 Extent of Affected Media Evaluation

6.1.1 Extent of Affected Soil

The extent of affected soil was defined by soil sample locations where at least one analyte concentration exceeds its most stringent Tier 1 SRO. The following sections discuss the delineation of the extent of affected soil on an analyte-specific basis. A comprehensive summary of soil sample depths and analysis with Tier 1 exceedances highlighted is provided in **Table 2-2**. Soil samples that were collected below the observed water table are highlighted blue in the summary table. The observed water table depth for each location was determined based on soil boring log descriptions, and all samples below 20 ft bgs were assumed to be saturated based on groundwater elevation data collected at the Site. These exceedances in saturated soil samples were included for the initial delineation of impacted soil but will not be considered to be representative of exceedances of soil inhalation or soil ingestion ROs for the purposes of remedial action planning.

6.1.1.1 VOCs

VOC concentrations detected above Tier 1 SROs are summarized in **Tables 3-1** to **3-3**. VOC exceedances were detected in deep soil, ranging from 3 to 20 feet below ground surface (bgs), in the north and east portions of the Site as shown in **Figure 4.1**, **Figure 5**, **Figure**, **6.1**, **Figure 7.1** and **Figure 8.1**. The following VOCs were detected at concentrations in one or more soil samples above the most stringent Tier 1 SROs at the Site:

- benzene
- chloroform
- 1,1-dichloroethene
- cis-1,2-dichloroethene
- tetrachloroethene

- trans-1,2-dichloroethene
- trichloroethene
- vinyl chloride

Trichloroethene concentrations also exceeded site-specific Csat values in several soil samples located on the east portion of the Site, as shown in **Figure 11** and summarized in **Table 6**. The site-specific Csat values were calculated using SSL equation S29. The following foc values were used to calculate the site-specific Csat values:

Soil Sample ID	Soil description	foc
DB 21 18-20	silty clay	5.16 x 10 ⁻³
DB 21 23-25	clayey sand	3.31 x 10 ⁻³

Additional details regarding the Csat calculations are provided in **Appendix E**.

The remaining VOC concentrations were below the most stringent Tier 1 SROs.

6.1.1.2 SVOCs (PAHs)

PAH concentrations detected above Tier 1 SROs are summarized in **Tables 3-1** to **3-3**. PAHs were detected at concentrations above Tier 1 SROs in shallow soil samples (0 to 3 feet bgs) collected from five soil boring locations (B-1, B-4, B-6, B-7, and B-8). PAHs were detected at concentrations above Tier 1 SROs in deep soil samples (> 3 feet bgs) from three soil boring locations (KP-SB10, B-7, and B-4). The locations of these exceedances are shown on **Figure 4.2** and **Figure 8.2**.

The following PAHs were detected at concentrations in one or more soil samples above the most stringent Tier 1 SROs at the Site:

- Benzo(a)anthracene
- Benzo(a)pyrene
- Benzo(b)fluoranthene
- Dibenz(a,h)anthracene
- Indeno(1,2,3-cd)pyrene

The remaining SVOC concentrations were below the most stringent Tier 1 SROs.

6.1.1.3 Metals

Metal concentrations detected above Tier 1 SROs are summarized in **Tables 3-1** to **3-3**. Metals were detected at concentrations above Tier 1 SROs in shallow soil samples (0 to 3 feet bgs) collected from three soil boring locations (B-4, B-6, and B-7). Metals were detected at concentrations above Tier 1 SROs in deep soil samples (> 3 feet bgs) from four soil boring locations (B-2, B-4, B-5, and B-6). The locations of these exceedances are shown on **Figure 4.3**, **Figure 6.2**, **Figure 7.2** and **Figure 8.3**.

The following metals were detected at concentrations in one or more soil samples above the most stringent Tier 1 SROs at the Site:

- Antimony
- Arsenic
- Lead
- Mercury
- Selenium

The remaining metal concentrations were below the most stringent Tier 1 SROs.

6.1.2 Extent of Affected Groundwater

Temporary groundwater monitoring wells (TMW-1, TMW-2, and TMW-3) were installed and sampled during BEI's August 2010 investigation. The wells were one inch in diameter and samples were collected utilizing a disposable bailer. Weston installed permanent, two-inch diameter wells at the same three locations in May 2012 (KP-MW-01, KP-MW-02, and KP-MW-03). Samples were then collected in June 2012 utilizing a low flow purge and sampling technique. The groundwater samples collected from the two-inch wells are considered more representative of actual groundwater conditions, because these wells were constructed with industry-standard sand packs and bentonite seals in the annular space, were properly developed, and the samples were collected using low flow techniques to reduce sample turbidity and increase the likelihood that the sample represents unaltered formation water. Groundwater data evaluated for this endangerment assessment include the most recent available groundwater results from the permanent wells installed at the Site.

6.1.2.1 VOCs

VOC concentrations detected above Tier 1 GROs are summarized in **Tables 4-1** to **4-2**. VOC concentrations were detected above Tier 1 GROs in four permanent monitoring wells at the Site: KP-MW-01, KP-MW-02, MW-05, and MW-06. The locations of these exceedances are shown on **Figure 9.1** and **Figure 10**.

The following VOCs were detected at concentrations in one or more groundwater samples above Tier 1 GROs at the Site:

- chloroform
- 1,1-dichloroethene
- 1,2 dichloroethane
- cis-1,2-dichloroethene
- tetrachloroethene
- trans-1,2-dichloroethene
- 1,1,2-trichloroethane
- trichloroethene
- vinyl chloride

6-3

The remaining VOCs concentrations were below the most stringent Tier 1 GROs.

6.1.2.2 Metals

The iron concentration detected in KP-MW-01 was above the Tier 1 GRO as summarized in **Table 4-1**. The location of this exceedance is shown on **Figure 9.2**.

The remaining metal concentrations were below the most stringent Tier 1 GROs.

6.2 Soil Exposure Routes Evaluation

The analytical results for all soil samples collected at the site have been compared to Tier 1 TACO SROs for residential properties and construction workers. A summary of all samples exceeding the Tier 1 SROs for the Residential Ingestion, Construction Worker Ingestion, Residential Inhalation, and Construction Worker Inhalation exposure routes follows. The following comparisons include exceedances of all potential soil exposure routes.

Residential Tier 1 SRO – Soil Ingestion Route

Tier 1 SRO exceedances for the residential ingestion exposure route are summarized in **Table 3-1** and **Figures 4-1**, **4-2**, and **4-3**.

VOCs were detected at concentrations above Tier 1 SROs for residential ingestion at B-2 and KP-SB07 between 6 and 12 ft bgs on the western portion of the Site. VOC concentrations detected in the deeper sample, KP-SB07 14-16 ft, were below Tier 1 SROs. VOC concentrations detected in samples collected from boring locations to the west (KP-SB01, DB-20) and east (TB-1, DB-22) were below Tier 1 SROs for residential ingestion.

VOCs were detected at concentrations above Tier 1 SROs for residential ingestion at ten soil boring located on the eastern portion of the Site (KP-SB04, B-4, DB-9, DB-11, KP-SB05, KP-SB02, B-5, KP-SB06, DB-18, and DB-17) between 6 and 20 ft bgs. VOC concentrations detected in samples collected from boring locations to the north (DB-2, DB-3), east (DB-6, DB-12), south (TB-4, B-6, DB-19), and west (DB-1, DB-4, DB-10, DB-16) were below Tier 1 SROs.

PAHs were detected at concentrations above Tier 1 SROs for residential ingestion in the shallow soil (0-3 ft) at five locations (B-1, B-4, B-6, B-7, and B-8). The deeper samples collected at boring locations B-1 and B-6 (3-6 ft), B-7 (6-9 ft), and B-4 (9-12 ft) were below Tier 1 SROs. The deeper samples collected from TB-5 (15-17 ft) near B-8 was below Tier 1 SROs.

Metals were detected at concentrations above Tier 1 SROs for residential ingestion in three soil borings (B-4, B-5, B-6) on the east portion of the Site between 0 and 6 ft bgs. Metal concentrations detected in the deeper samples (6-9 ft) at each location were below Tier 1 SROs.

Residential Tier 1 SRO – Inhalation Route

Tier 1 SRO exceedances for the residential inhalation exposure route are summarized in **Table 3-1** and **Figure 5**.

VOCs were detected at concentrations above Tier 1 SROs for residential inhalation on the western portion of the Site at KP-SB-01, B-2, and KP-SB07. VOC concentrations detected in the deeper sample, KP-SB07 14-16 ft, were below Tier 1 SROs. VOC concentrations detected in samples collected from boring locations to the west (DB-20) and east (KP-SB-08) were below Tier 1 SROs for residential inhalation.

VOCs were detected at concentrations above Tier 1 SROs for residential inhalation at ten soil borings located on the eastern portion of the Site (KP-SB04, B-4, DB-9, DB-11, KP-SB05, KP-SB02, B-5, KP-SB06, DB-18, and DB-17) between 3 and 20 ft bgs. VOC concentrations detected in samples collected from boring locations to the north (DB-2, DB-3), east (DB-6, DB-12), south (TB-4, B-6, DB-19), and west (DB-1, DB-4, DB-10, DB-16) were below Tier 1 SROs.

Construction Worker Tier 1 SRO – Soil Ingestion Route

Tier 1 SRO exceedances for the construction worker ingestion exposure route are summarized in **Table 3-2** and **Figures 6-1** and **6-2**.

TCE concentrations were detected above the Tier 1 SRO for construction worker ingestion in six soil samples (KP-SB04, DB-09, DB-11, KP-SB05, KP-SB06, and DB-18) on the east portion of the Site between 10 and 16 ft bgs. The deeper samples collected at boring locations DB-09 (16-18 ft), DB-11 (18-20 ft), and DB-18 (16-18 ft) were below Tier 1 SROs. In addition, TCE concentrations detected in samples collected from boring locations to the north (DB-2, DB-3), east (DB-6, DB-12), south (TB-4, B-6, DB-19), and west (DB-1, DB-4, DB-10, DB-16) were below Tier 1 SROs.

Metals were detected at concentrations above Tier 1 SROs for construction worker ingestion in three soil borings (B-4, B-5, B-6) on the east portion of the Site between 0 and 6 ft bgs. Metal concentrations detected in the deeper samples (6-9 ft) at each location were below Tier 1 SROs.

Construction Worker Tier 1 SRO – Inhalation Route

Tier 1 SRO exceedances for the construction worker inhalation exposure route are summarized in **Table 3-2** and **Figures 7-1** and **7-2**.

VOCs were detected at concentrations above Tier 1 SROs for construction worker inhalation at B-2 and KP-SB07 between 6 and 12 ft bgs on the western portion of the Site. VOC concentrations detected in the deeper sample, KP-SB07 14-16 ft, were below Tier 1 SROs. VOC concentrations detected in samples collected from boring locations to the west (KP-SB01, DB-20) and east (TB-1, DB-22) were below Tier 1 SROs for construction worker inhalation.

VOCs were detected at concentrations above Tier 1 SROs for construction worker inhalation at ten soil boring located on the eastern portion of the Site (KP-SB04, B-4, DB-9, DB-11, KP-SB05, KP-SB02, B-5, KP-SB06, DB-18, and DB-17) between 3 and 20 ft bgs. VOC concentrations detected in samples collected from boring locations to the north (DB-2, DB-3), east (DB-6, DB-12), south (TB-4, B-6, DB-19), and west (DB-1, DB-4, DB-10, DB-16) were below Tier 1 SROs.

With the exception of the exceedances summarized in the tables and figures listed above, no other sample contained any contaminants of concern (COCs) at concentrations above the Residential and Construction Worker Inhalation or Ingestion SROs.

Given the analytical results summarized above, the Residential Ingestion, Construction Worker Ingestion, Residential Inhalation, and Construction Worker Inhalation exposure routes cannot be excluded from consideration, and will be further evaluated in Section 7.0 of this report.

6.3 Groundwater Exposure Route Evaluation

On-site groundwater impacts were investigated through monitoring well installation and groundwater sampling. Groundwater at the site is proposed to be classified as Class II.

Tier 1 SRO exceedances for the soil component of the groundwater ingestion exposure route are summarized in **Table 3-3** and **Figures 8-1**, **8-2** and **8-3**.

Tier 1 GRO exceedances for the groundwater ingestion exposure route are summarized in **Table 4-1** and **Figures 9-1** and **9-2**.

The City of Chicago groundwater ordinance prohibits the use of groundwater as a potable water source, which will be used to exclude/address the groundwater ingestion exposure route for the Site in a later submittal.

Following completion of the first phase of remediation, which will treat the areas where soil concentrations exceed soil saturation levels, we anticipate collecting an updated round of groundwater samples and completing R-26 modeling to evaluate the potential for groundwater and SCGWI exceedances to migrate offsite based on the post-source area remediation conditions.

6.4 Indoor Inhalation Exposure Route Evaluation

The Indoor Inhalation Exposure Route was evaluated with both groundwater and soil gas samples.

Tier 1 GRO and SGRO exceedances for the indoor inhalation residential exposure route are summarized in **Table 4-2** and **Table 5**, respectively. Locations of these exceedances are highlighted in **Figure 10**.

The TCE concentration detected in soil gas sample SV-01 during the Terracon 2013 investigation exceeded the indoor inhalation residential exposure route RO. In 2018, EDI installed a soil vapor point, SV-07, located in the vicinity of SV-01 and closer to the west property boundary. The TCE concentration detected in soil gas sample SV-07 was below Tier 1 soil gas ROs.

Additional investigation activities to delineate the indoor inhalation exposure route exceedances east of the Site is ongoing. The offsite investigation results will be provided in a CSIR addendum once complete.

7.0 Remediation Objectives Report

Remediation objectives for the Site were developed using the human health risk-based procedures established in Title 35 of the IAC, Part 742 (TACO). TACO provides a framework for developing remediation objectives for impacted soil and groundwater that are protective of human health and take into account contaminant characteristics, human exposure routes, and land use considerations to develop ROs that will provide adequate protection of human health and the environment.

A TACO Tier 1 soil and groundwater evaluation was completed as part of the Endangerment Assessment presented in Section 6. Based on that evaluation, COC concentrations at the Site exceeded Tier 1 SROs for the residential ingestion and outdoor inhalation exposure routes, construction worker ingestion and inhalation exposure routes, and soil component to groundwater ingestion exposure route. COC concentrations at the Site exceeded the Tier 1 GROs for the Class II groundwater ingestion exposure route and the residential indoor inhalation exposure route. These exposure routes were carried forward for additional consideration. A summary of COCs in soil and/or groundwater above Tier 1 ROs is provided in **Tables 3** to **5**.

The TACO process is a tiered approach that potentially involves a three-tiered evaluation of chemicals against published or calculated remediation objectives. Using the TACO tiered approach, the COIs with concentrations above Tier 1 ROs were further evaluated. The Tier 2 Evaluation involves the derivation of Tier 2 ROs using site-specific soil physical data and the same equations used by the IEPA in the calculation of Tier 1 ROs. The construction worker exposure routes will be addressed using a construction worker caution statement and were not further evaluated. The residential ingestion exposure route was evaluated using the new benzo(a)pyrene toxicity criteria published by USEPA in 2017, which is listed below. Risk evaluation conducted for the Site is consistent with the scope of a Tier 2 Evaluation as defined in 35 IAC Part 742. Subpart F and includes the following:

 Calculation of Tier 2 SROs for carcinogenic PAHs (cPAHs) with concentrations detected above the Tier 1 SROs for the ingestion route, including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene. Tier 2 SROs for cPAHs for the ingestion route are derived using the latest toxicity criteria for PAHs. This approach is consistent with the guidance provided in 35 IAC Part 742.705(d)(2);

The soil and groundwater components of the groundwater ingestion exposure route will be addressed by excluding the exposure route in accordance with 35 IAC 742.320 (Subpart C); additional explanation of this exclusion will be provided following completion of the remediation activities described in Section 8.0.

7.1 Tier 2 Evaluation

Tier 2 SROs for the soil ingestion pathway were derived for cPAHs through the use of the same equations used by the IEPA when developing Tier 1 SROs for the soil ingestion pathway and the toxicity criteria for benzo(a)pyrene that were published in the Integrated Risk Information System (IRIS) on January 19, 2017 (US EPA, 2017). Detailed information regarding the ingestion exposure route calculations is presented in **Appendix F**. COC concentrations that remain above SROs after the Tier 2 evaluation for the residential soil ingestion exposure pathway are highlighted in **Table 7**.

7.2 Soil Remediation Objectives

Proposed SROs for COCs are the TACO Tier 1 SROs for residential properties in 35 IAC 742. Appendix B, Table A, and Appendix B, Table D (pH-specific SROs) with the exception of the calculated Tier 2 SROs listed below for cPAHs.

Constituent	Tier 2 SRO – Ingestion (mg/kg)
	Residential
Benzo(a)anthracene	8.5
Benzo(a)pyrene	1.3*
Benzo(b)fluoranthene	8.5
Dibenz(a,h)anthracene	0.85
Indeno(1,2,3-cd)pyrene	8.5

*The calculated Tier 2 value for benzo(a)pyrene is less than the background value. The background value is the selected RO.

PAH analyte concentrations compared to the calculated Tier 2 SROs are presented in Table 7.

7.3 Groundwater Remediation Objectives

The Groundwater Remediation Objectives for the site will be the TACO Tier 1, Class II GROs as defined in 35 IAC 742, Appendix B, Table E and H.

7.4 Soil Gas Remediation Objectives

The Soil Gas Remediation Objectives for the site will be the TACO Tier 1, SGROs as defined in 35 IAC 742, Appendix B, Table G and H.

7.5 Exposure Route Exclusion

The City of Chicago groundwater ordinance prohibits the use of groundwater as a potable water source. In accordance with the 35 IAC 742 Subpart C, no exposure route shall be excluded from consideration relative to a COC unless the requirements of Section 742.300 and Section 742.305 are met. Site conditions currently do not meet the requirements due to the presence of soil exceeding the TCE soil saturation value in the eastern portion of the site. These concentrations will be remediated as described in the RAP. Exposure route exclusion will be evaluated following the completion of the planned source area remediation activities, at which time the potential for GRO and SCGWI RO exceedances to migrate offsite will also be evaluated.

8.0 Remedial Action Plan

As noted in the previous section, COCs exceed Site-specific ROs for five potential exposure pathways. The areas of the exceedances, exposure pathways, and the remedial actions are summarized in **Table 8** and described in detail in the following subsections.

8.1 Selected Remedial Technologies

The City plans to first remediate the TCE source material in soil located in the eastern portion of the Site, which is funded partly by a USEPA Brownfields Cleanup Grant. At some point following the completion of source material remediation, the City intends to install engineered barriers and implement institutional controls as needed to address the remaining applicable RO exceedances. The timing of the engineered barrier and institutional controls implementation is not currently known, and will depend upon funding availability, among other factors, but it will be completed prior to the future opening of the Site as a park.

Current conditions at the Site do not meet the requirements for pathway exclusion. Following the TCE source material remediation described below, the requirements will be reevaluated to confirm pathway exclusion and the use of engineered barriers and institutional controls to address the remaining exceedances. An evaluation of the potential for GRO and SCGWI exceedances to migrate offsite in groundwater will also be completed following completion of source area remediation. The Site is located within the City's Groundwater Ordinance, and we anticipate relying on the Ordinance to exclude the groundwater ingestion exposure route on-Site and on adjacent properties as needed.

8.1.1 In-Situ Treatment

Soil in the eastern portion of the Site will be treated to reduce TCE soil concentrations to a level below C_{sat} using an in-site chemical oxidant applied via soil mixing. The proposed TCE source material remediation activities include the following:

- Reduction of TCE to below the C_{sat} limit in approximately 981 cubic yards (CY) of soil in the 3,200 square-foot "TCE-impacted zone" located in the eastern portion of the Site between 8 and 20 feet below the ground surface (bgs) by applying In-Situ Chemical Oxidation (ISCO) via soil mixing.
- Confirmation soil sampling/analysis to confirm TCE concentrations in the remediation area are below the C_{sat} limit following the completion of ISCO treatment.
- The use of a construction worker caution statement and soil management plan to ensure the safe handling and disposal of soils during these activities and during any future subsurface work.

Implementation will include the temporary removal and onsite stockpiling of the top 8 feet of soil, dewatering if necessary, design and installation of an excavation support system, and treatment of soil exceeding the TCE C_{sat} limit using ISCO applied by soil mixing. Following ISCO application and mixing and confirmation sampling, additional treatment will be applied if needed to any areas that remain above the soil saturation limit for TCE.

The selected remedy's effectiveness was tested and demonstrated in a bench-scale study conducted in AECOM's treatability laboratory in Austin, Texas in 2018, using soil and groundwater collected from the eastern portion of the Site. AECOM's lab ran bench scale treatment tests using several different doses of the oxidizer potassium permanganate in order to test the effectiveness of the chemical at reducing TCE concentrations. The pilot study concluded that potassium permanganate was effective at reducing TCE concentrations in Site soil sufficiently to eliminate exceedances of the soil saturation limit and provided a dose recommendation for the oxidant.

Soil mixing allows for physically delivering the oxidant to the selected treatment zones and ensuring sufficient contact between the oxidant and the source area soil material. This approach is especially effective in low permeability soils where other delivery methods (e.g., injections) are less effective. The planned treatment area is shown on **Figure 11** and is divided into two soil units (SU): SU1 is the larger area where exceedances of the TCE soil saturation limit were detected between 8 and 16 ft bgs. SU2 is the smaller area where exceedances of the limit were detected between 8 and 20 ft bgs.

8.1.2 Engineered Barriers

Following completion of source area remediation, an engineered barrier (either a 3-foot clean fill barrier, a paved surface, or an 18-inch-thick equivalent geotextile and clean soil barrier, with prior IEPA approval) will be installed over all areas of the Site where soil COC concentrations exceed residential ingestion ROs in accordance with 35 IAC 742 subpart K. This is an effective way to eliminate the soil ingestion exposure route. Areas of the Site where soil is present that exceeds the residential outdoor inhalation RO for one or more COCs will have an enhanced engineered barrier consisting of either 10' of clean soil or clean fill plus a vapor barrier, with IEPA approval, in order to eliminate the soil inhalation exposure route in those areas. These engineered barriers will effectively protect human health and the environment by preventing human exposure to contaminated soil as long as the barrier is maintained. **Figure 12** shows the areas where engineered barriers are anticipated to be installed during a later phase of site development in order to address soil ingestion and/or soil inhalation RO exceedances. This map will be updated as needed following the completion of source area remediation and/or the development of site redevelopment and landscaping designs.

8.1.3 Institutional Controls

The following exposure pathways will be addressed using institutional controls as summarized in **Table 8**: residential soil ingestion/inhalation exposure pathways (via commitments to maintain engineered barriers), groundwater ingestion, indoor inhalation, and construction worker soil ingestion/inhalation. We expect these will include a Construction Worker caution statement, a commitment to not construct buildings in portions of the site with indoor inhalation RO exceedances unless a building control technology is included in the structure, and a reliance on the City's Groundwater Ordinance.

8.2 Remedial Action Feasibility, Schedule, and Effectiveness

The planned remedial actions presented in this RAP are feasible and achievable based on the Site conditions and AECOM's experience with similar sites. The effectiveness of ISCO to remediate soil exceeding the TCE Csat limit is high. ISCO has been proven to be effective at reducing TCE concentrations to below the Csat limit when reactants are applied at the correct dose and can physically reach the contaminants. AECOM's bench scale pilot testing helped to confirm that this will be an effective treatment for soil from the Site. Soil mixing is the preferable reactant delivery method in low-permeability soils like those found at the Site.

A partial Remedial Action Completion Report (RACR) documenting the completion of source area soil remediation will be submitted to IEPA first, which will ask for IEPA's review and concurrence on the completion of TCE source area soil remediation only. We understand that a NFR will not be issued in response to the first, partial RACR. A second RACR will be submitted to IEPA at a later date, after engineered barriers and institutional controls have been implemented at the Site. At that time, the RA will ask for issuance of a Comprehensive NFR Letter.

8.3 Confirmation Sampling and Analysis Plan

Following the completion of soil treatment, confirmation soil samples will be collected at two-foot intervals at 10 boring locations across the TCE source remediation area. Confirmation sample locations will correspond to historical soil borings where TCE soil saturation exceedances were detected, as well as additional sampling locations to enhance spatial and vertical delineation and support the remedy performance assessment. The samples will be collected within the treated mass to confirm the remaining levels of TCE in soil are below the Csat limit, and will be collected from the depth ranges of 8-16 ft bgs in SU 1 and 8-20 ft bgs in SU 2. If an area fails confirmation sampling, reagent will be added to re-treat the area and subsequent confirmation samples will be collected until TCE concentrations below Csat are achieved.

8.4 Current and Post-Remediation Use of the Property

The Site is currently mostly vacant with some portions covered in concrete and some portions covered in grass/soil. The Site is secured by a fence with a locked gate on N. Kimball Avenue. Following the completion of source area remediation and the later implementation of engineered barriers and institutional controls, the City's intent is to redevelop the property as a public park that will connect to the adjacent Bloomingdale Trail, allowing it to serve as an access point to the elevated greenway and multi-use recreational path (The 606).

8.5 Completion of Remediation Activities

A partial RACR will be submitted to the IEPA following completion of the source area remediation. A second RACR will be submitted later, to document the completion of engineered barrier and institutional control implementation and request a Comprehensive NFR.

9.0 CSIR ROR RAP Summary and Conclusions

The City of Chicago Department of AIS contracted with AECOM to complete a Comprehensive Site Investigation and subsequent IEPA SRP reporting for the property located at 1807-1815 N. Kimball Avenue, Chicago, Illinois (the "Site"), which is enrolled in the SRP under the Site name "North Kimball Brownfield Site", and LPC # 0316225292.

The Site is mostly vacant with some portions covered in concrete and some portions covered in grass/soil. Following remediation, the City intends to redevelop the Site as a public park that will connect to the adjacent Bloomingdale Trail, allowing it to serve as an access point to the elevated greenway and multi-use recreational path (The 606).

Subsurface environmental investigations, including Phase II ESAs and sampling associated with the CSIR and recent, additional investigations were completed for this Site and its adjacent properties between August 2010 and October 2018. The horizontal and vertical extent of contamination has been delineated on the Site, with the exception of soil gas and groundwater concentrations exceeding indoor inhalation ROs at the eastern site boundary. Offsite soil gas delineation to address this on the east adjacent property is ongoing. The data collected is sufficient to characterize the nature and extent of impact present at the Site.

A TACO Tier 1 soil and groundwater evaluation was completed as part of the Endangerment Assessment presented in Section 6. Based on that evaluation, COC concentrations at the Site exceeded Tier 1 SROs for the residential ingestion and outdoor inhalation exposure routes, construction worker ingestion and inhalation exposure routes, and soil component to groundwater ingestion exposure route. Concentrations of TCE exceeded Csat values in several soil samples located on the east portion of the Site (the TCE Source Area). COC concentrations at the Site exceeded the Tier 1 GROs for the Class II groundwater ingestion exposure route and the residential indoor inhalation exposure route.

Proposed SROs for COCs are the TACO Tier 1 SROs for residential properties in 35 IAC 742. Appendix B, Table A, and Appendix B, Table D (pH-specific SROs) with the exception of the calculated Tier 2 SROs listed below for cPAHs.

Constituent	Tier 2 SRO – Ingestion (mg/kg)
	Residential
Benzo(a)anthracene	8.5
Benzo(a)pyrene	1.3*
Benzo(b)fluoranthene	8.5
Dibenz(a,h)anthracene	0.85
Indeno(1,2,3-cd)pyrene	8.5

*The calculated Tier 2 value for benzo(a)pyrene is less than the background value. The background value is the selected RO.

The Groundwater Remediation Objectives for the site will be the TACO Tier 1, Class II GROs as defined in 35 IAC 742, Appendix B, Table E and H.

The Soil Gas Remediation Objectives for the site will be the TACO Tier 1, SGROs as defined in 35 IAC 742, Appendix B, Table G and H.

The steps to cleanup and redevelop this site include TCE source area remediation, engineered barrier installation and institutional control implementation. The first phase of remediation, funded in part by a USEPA Brownfields Cleanup Grant, will include in situ treatment of the TCE Source Area. An Interim RACR documenting the TCE source area remediation activities will be submitted for IEPA review and approval following completion of that step. Current conditions at the Site do not meet the requirements for pathway exclusion. Following TCE source remediation, the requirements will be evaluated again to confirm pathway exclusion and the use of engineered barriers and institutional controls. Following the later completion of engineered barriers (expected to be completed during site redevelopment), a final RACR will be submitted which will include a request for a Comprehensive No Further Remediation letter.

10.0 References

- Clean World Engineering, Ltd. (CWE), 2010, Phase I ESA Report, 1807-1815 North Kimball Avenue, Chicago, Illinois, April 2010.
- Brecheisen Engineering, Inc. (Brecheisen), 2010, Phase II ESA, 1807-1815 North Kimball Avenue, Chicago, Illinois, September 2010.
- Illinois State Geological Survey (ISGS), 1998. Glacial Drift Thickness and Character. Data originally form ISGS Circular 490 by Piskin and Bergstom (1975). ISGS 1994, revised 1998. <u>http://clearinghouse.isgs.illinois.edu/data/geology/glacial-drift-thickness-and-character</u>
- Kolata,D. 2005. Bedrock Geology Map of Illinois. Contributions by: F. Brett Denny, et al., Cartography by: Curtis C. Abert et al. <u>http://isgs.illinois.edu/content/bedrock-geology-mapillinois</u>
- Terracon Consultants, Inc. (Terracon), 2012, Phase I Environmental Site Assessment (ESA), 1809-1815 North Kimball Avenue, Chicago, Illinois, August 2012.
- Terracon, 2013, Phase II Site Investigation Summary, 1809 North Kimball Avenue, Chicago, Illinois, January 2013.
- Weston Solutions, Inc. (Weston), 2012, Comprehensive Site Investigations Report (CSIR), 1807-1815 North Kimball Avenue, Chicago, Illinois, July 2012.

Willman, H.B. and Jerry A. Lineback, 1970. Surficial Geology of the Chicago Region, ISGS, 1970.
AECOM

Tables

Table 1 Groundwater Elevation Summary 1807-1815 North Kimball Avenue Chicago, Illinois

	Reference	e Elevation		Screene	d Interva	I	Screen	Depth to Water Groundwater Elevation										
1	Ground	Top of	De	pth	Elev	ation	Length											
Location	Surface	Casing	From	То	From	То	•	6/1/2012	6/21/2012	7/12/2012	9/10/2012	11/9/2018	6/1/2012	6/21/2012	7/12/2012	9/10/2012	11/9/2018	Date Installed
	(ft CCD)	(ft CCD)	(ft bgs)	(ft bgs)	(ft CCD)	(ft CCD)	(feet)	(ft bgs)	(ft bgs)	(ft bgs)		(ft TOC)	(ft CCD)	(ft CCD)	(ft CCD)	(ft CCD)	(ft CCD)	
KP-MW01	20.92	20.41	8	18	12.92	2.92	10	3.64	11.05	12.99	NM	NM	17.28	9.87	7.93	NM	NM	Weston 2012
KP-MW02	21.95	21.38	9	19	12.95	2.95	10	14.25	17.84	17.63	NM	4.76	7.7	4.11	4.32	NM	16.62	Weston 2012
KP-MW03	21.83	21.21	8	18	13.83	3.83	10	14.64	19.12	18.87	NM	NM	7.19	2.71	2.96	NM	NM	Weston 2012
MW-4	NA	99.35	10	20	NA	NA	10	NM	NM	NM	NA	5.32	NM	NM	NM	85.36	94.03	Terracon 2012
MW-5	NA	99.24	10	20	NA	NA	10	NM	NM	NM	NA	6.25	NM	NM	NM	91.63	92.99	Terracon 2012
MW-6	NA	99.96	10	20	NA	NA	10	NM	NM	NM	NA	6.98	NM	NM	NM	85.26	92.98	Terracon 2012
MW-7	NA	99.80	10	20	NA	NA	10	NM	NM	NM	NA	NM	NM	NM	NM	84.65	NM	Terracon 2012

Notes:

CCD = Chicago City Datum

NM = not measured

NA = Not Available

Not CCD, based on local benchmark

Table 2-1. 2018 Investigation Sample and Analysis Summary 1807-1815 N. Kimball Avenue Site Chicago, Illinois

Sample Location	Туре	Sample ID	Analytes				
			TCL: VOCs, SVOCs, metals, PCBs,				
DB-02, DB-07, DB-17, DB21	Soil	DB021012, DB071618, DB171214, DB211820	pesticides and pH				
			(DB211820 also analyzed for foc)				
DB-13	Soil	sent soil to Austin, TX treatability lab	Bench scale pilot test				
DB-21	Soil	DB212325	VOCs, SVOCs, foc				
Remaining soil boring	Soil	Remaining soil samples	VOC				
locations	5011	Kemanning son samples					
DB_{10} and DB_{12} (WC_1)	Soil Boring	composited two borings depth 10-16' (or most	Illinois Green Sheet (Waste				
DB-10 and DB-13 (WC-1)	Joil Bornig	impacted)	Characterization)				
	Croundwator		TCL (VOCs, SVOCs, metals, PCBs,				
KP-10100-02, 10100-04	Groundwater	KP1V1VV02, 1V1VV4	pesticides)				
MW-05, MW-06	Groundwater	MW5, MW6	VOCs, PAHs, RCRA Metals				
	Soil Vapor	SV 7 SV 8 SV 0 SV 10	VOCa by TO 15				
30-7, 30-8, 30-9, 30-10	Point	30-7, 30-8, 30-9, 30-10	VUCS BY 10-15				

Notes

VOCs - Volatile organic compounds

SVOCs - Semi-volatile organic compounds

TCL - Target Compound List

PCBs - polychlorinated biphenyls

foc - fraction of organic carbon

Table 2-2. Comprehensive Soil Sample and Analysis Summary 1807-1815 N. Kimball Avenue Site Chicago, Illinois

							TPH (GRO				TCL	RCRA	Select	TCLP				
Soil Boring Location	Sample ID	Sample Depth	voc	BTEX	SVOC	PAHs	and DRO)	PCBs	Pesticides	Herbicides	Metals	Metals	Metals	Metals	Cyanide	foc	pН	Reference
	B-1 (0-3)	0 - 3	Х	İ		Х	,	Х	Х			Х		Cr	-		X	BEI 2010
	B-1 (3-6)	3 - 6		İ		Х						Х					Х	BEI 2010
B-1	B-1 (6-9)	6 - 9	Х										Cr				Х	BEI 2010
	B-1 (9-12)	9 - 12	Х	İ									Cr					BEI 2010
	B-2 (3-6)	3 - 6	Х		Х			Х	Х		Х				Х		Х	BEI 2010
	B-2 (6-9)	6 - 9	Х		Х							Х					Х	BEI 2010
	KP-SB01(6-9)	6 - 9					Х											Weston 2012
B-2/KP-SB01	B-2 (9-12)	9 - 12	Х															BEI 2010
	KP-SB01(18-20)	18 - 20	Х															Weston 2012
	KP-SB01(18-20)D	18 - 20	Х															Weston 2012
	KP-SB09(0-3)	0 - 3	Х		Х											Х		Weston 2012
	B-3 (3-6)	3 - 6	Х			Х		Х	Х			Х					Х	BEI 2010
B-3/KP-5B09	KP-SB09(3-6)	3 - 6														Х		Weston 2012
	B-3 (6-9)	6 - 9	Х			Х						Х					Х	BEI 2010
	B-4 (0-3)	0 - 3			Х			Х	Х			Х					Х	BEI 2010
	B-4 (3-6)	3 - 6				Х					Х				Х		Х	BEI 2010
													Sb, As,					
В-4	B-4 (6-9)	6 - 9	Х										Fe, Pb,					BEI 2010
	· · ·												Hg					
	B-4 (9-12)	9 - 12	Х		Х								Ŭ					BEI 2010
	B-5 (0-3)	0 - 3				Х					Х				Х	Х	Х	BEI 2010
	B-5 (3-6)	3 - 6	Х		Х			Х	Х		Х				Х		Х	BEI 2010
													Sb, As,					
	B-5 (6-9)	6 - 9	Х		Х			Х	Х				Pb, Ha,					BEI 2010
B-5/KP-5B02	· · ·												Se					
	B-5 (9-12)	9 - 12	Х															BEI 2010
	KP-SB02(9-12)	9 - 12					Х											Weston 2012
	KP-SB02(18-20)	18 - 20	Х															Weston 2012
	B-6 (0-3)	0 - 3	Х		Х			Х	Х			Х					Х	BEI 2010
	B-6 (3-6)	3 - 6	Х		Х			Х	Х			Х		RCRA			Х	BEI 2010
B-6		0 0	V										As, Cr,				V	
	В-6 (6-9)	6 - 9	X										Pb, Hg				X	BEI 2010
	B-6 (9-12)	9 - 12	Х															BEI 2010
	B-7 (0-3)	0 - 3	Х		Х			Х	Х	Х		Х					Х	BEI 2010
	B-7 (3-6)	3 - 6	Х		Х							Х					Х	BEI 2010
B-7/KP-SB03	B-7 (6-9)	6 - 9	Х			Х										Х		BEI 2010
	B-7 (9-12)	9 - 12	Х															BEI 2010
	KP-SB03(9-12)	9 - 12			Х											Х		Weston 2012
	B-8 (0-3)	0 - 3		Х		Х				Х		Х					Х	BEI 2010
	KP-SB10(3-5)	3 - 5				Х												Weston 2012
D-0/RF-3D10	KP-SB10(12-14)	12 - 14				Х												Weston 2012
	KP-SB10(12-14)D	12 - 14				Х												Weston 2012
KP-SB04	KP-SB04(10-12)	10 - 12	Х															Weston 2012
NI -0004	KP-SB04(14-16)	14 - 16	Х															Weston 2012
	KP-SB05(11-13)	11 - 13	Х															Weston 2012
	KP-SB05(14-16)	14 - 16	Х															Weston 2012
KP-SB06	KP-SB06(10-12)	10 - 12	Х															Weston 2012
	KP-SB06(14-16)	14 - 16	Х															Weston 2012
KP-SB07	KP-SB07(8-10)	8 - 10	Х															Weston 2012
	KP-SB07(14-16)	14 - 16	Х															Weston 2012

Table 2-2. Comprehensive Soil Sample and Analysis Summary 1807-1815 N. Kimball Avenue Site Chicago, Illinois

							TPH (GRO				TCL	RCRA	Select	TCLP				
Soil Boring Location	Sample ID	Sample Depth	VOC	BTEX	SVOC	PAHs	and DRO)	PCBs	Pesticides	Herbicides	Metals	Metals	Metals	Metals	Cyanide	foc	pН	Reference
	KP-SB08(4-6)	4 - 6	Х				,											Weston 2012
KP-5B08	KP-SB08(15-17)	15 - 17	Х				Х											Weston 2012
TB-1	TB-1	23-25	Х															Terracon 2013
	TB-2	13-15	Х															Terracon 2013
1B-2	TB-2-Dup	13-15	Х															Terracon 2013
TB-3	TB-3	23-25	Х															Terracon 2013
TB-4	TB-4	28-30	Х															Terracon 2013
	TB-5	15-17			Х													Terracon 2013
10-0	TB-5-Dup	15-17			Х													Terracon 2013
	DB011012	10-12	Х		1													EDI 2018
	DB011012D	10.12	v															
DB-01	(Duplicate)	10-12	^															EDI 2016
	DB011618	16-18	Х															EDI 2018
	DB012224	22-24	Х															EDI 2018
	DB021012	10-12	Х		Х			Х	Х		Х							EDI 2018
DB-02	DB021618	16-18	Х															EDI 2018
	DB022224	22-24	Х															EDI 2018
	DB031012	10-12	Х															EDI 2018
	DB031618	16-18	Х															EDI 2018
DB-03	DB031618D	16 19	v															
	(Duplicate)	10-10	^															EDI 2010
	DB032224	22-24	Х															EDI 2018
	DB041012	10-12	Х															EDI 2018
	DB041618	16-18	Х															EDI 2018
DB-04	DB042224	22-24	Х															EDI 2018
	DB041618D	16 19	v															
	(Duplicate)	10-10	^															EDI 2010
DB-05	DB052022	20-22	Х															EDI 2018
00-00	DB052426	24-26	Х															EDI 2018
DB-06	DB061416	14-16	Х															EDI 2018
00 00	DB062224	22-24	Х															EDI 2018
	DB071113	11-13	Х															EDI 2018
DB-07	DB071618	16-18	Х		Х			Х	Х		Х							EDI 2018
	DB072224	22-24	Х															EDI 2018
	DB081113	11-13	Х															EDI 2018
DB-08	DB081618	16-18	Х															EDI 2018
	DB082224	22-24	Х															EDI 2018
	DB091113	11-13	Х															EDI 2018
DB-09	DB091618	16-18	Х															EDI 2018
	DB092224	22-24	Х															EDI 2018
DB-10	DB101820	18-20	Х															EDI 2018
55 10	DB102628	26-28	Х															EDI 2018
	DB111214	12-14	Х															EDI 2018
DB-11	DB111820	18-20	Х															EDI 2018
	DB112628	26-28	Х															EDI 2018
	DB121214	12-14	Х															EDI 2018
	DB121214D	12-14	x															EDI 2018
DB-12	(Duplicate)																	
· -	DB121820	18-20	X								ļ							EDI 2018
	DB122628M (MS/MSD)	26-28	Х															EDI 2018

Table 2-2. Comprehensive Soil Sample and Analysis Summary 1807-1815 N. Kimball Avenue Site Chicago, Illinois

							TPH (GRO				TCL	RCRA	Select	TCLP				
Soil Boring Location	Sample ID	Sample Depth	voc	BTEX	SVOC	PAHs	and DRO)	PCBs	Pesticides	Herbicides	Metals	Metals	Metals	Metals	Cyanide	foc	рН	Reference
DB 12	DB131820	18-20	Х		1													EDI 2018
00-13	DB132426	24-26	Х															EDI 2018
	DB141416	14-16	Х															EDI 2018
DB-14	DB141820	18-20	Х															EDI 2018
	DB151012	10-12	Х															EDI 2018
DB-15	DB151618	16-18	Х															EDI 2018
	DB152224	22-24	Х		1													EDI 2018
	DB161012	10-12	Х															EDI 2018
	DB161618	16-18	Х															EDI 2018
DB-16	DB161618D	16 19	v		1													
	(Duplicate)	10-10	^															
	DB162224	22-24	Х															EDI 2018
	DB171214	12-14	Х	Х				Х	Х		Х							EDI 2018
DB-17	DB171618	16-18	Х															EDI 2018
	DB172224	22-24	Х															EDI 2018
	DB181012	10-12	Х															EDI 2018
DB-18	DB181618	16-18	Х															EDI 2018
	DB182224	22-24	Х															EDI 2018
	DB191416	14-16	Х															EDI 2018
00-19	DB191820	18-20	Х															EDI 2018
	DB201012	10-12	Х															EDI 2018
	DB201618	16-18	Х															EDI 2018
	DB201618M	16 19	v															
DB-20	(MS/MSD)	10-10	^															EDI 2010
	DB202426	24-26	Х															EDI 2018
	DB202426D	24.26	v															
	(Duplicate)	24-20	^															EDI 2010
DB-21	DB211820	18-20	Х		Х			Х	Х		Х					Х		EDI 2018
00-21	DB212325	23-25	Х		Х											Х		EDI 2018
	DB221012	10-12	Х															EDI 2018
DB-22	DB221618	16-18	X															EDI 2018
	DB222426	24-26	Х															EDI 2018

Source: Table 2-1, Weston 2012. Updated March 2021 Exceeds Tier 1 RO

Sample collected below observed water table

Table 3-1 Summary of Soil Tier 1 Residential Remediation Objective Exceedances 1807-1815 N. Kimball Avenue, Chicago, Illinois

			Reside	ential		
Constituents	Depth	Ingestion	1	Inhalation		Reference
Volatile Organic Compoun	ds					
Chloroform	Deep			B-2 (9-12) = 6.13	[0.3]	BEI 2010
	Deep	B-4 (6-9) = 872	[780]			BEI 2010
cis-1,2-Dichloroethene	Deep	B-5 (6-9) = 942	[780]			BEI 2010
	Deep	B-5 (9-12) = 990	[780]			BEI 2010
Tetrachloroethene	Deep	B-5 (9-12) = 14	[12]	B-5 (9-12) = 14	[11]	BEI 2010
	Deep	DB-09 (11-13) = 2300	[58]	DB-09 (11-13) = 2300	[5]	EDI 2018
	Deep	DB-11(12-14) = 2300	[58]	DB-11(12-14) = 2300	[5]	EDI 2018
	Deep	DB-17(12-14) = 960 DB-18(10-12) = 3200	[30]	DB-17(12-14) = 960 DB-18(10-12) = 3200	[5]	EDI 2018
	Deep	B-2(6-9) = 599	[50]	B-2 (6-9) = 599	[5]	BEI 2010
	Deep	B-2 (9-12) = 408	[58]	B-2(9-12) = 408	[5]	BEI 2010
	Deep	B-5 (3-6) = 73	[58]	B-5 (3-6) = 73	[5]	BEI 2010
	Deep			KP-SB01 (18-20) = 8.2	[5]	Weston 2012
Trichloroethene	Deep			KP-SB01(18-20)D = 9.6	[5]	Weston 2012
	Deep	KP-SB02(18-20) = 803	[58]	KP-SB02(18-20) = 803	[5]	Weston 2012
	Deep	KP-SB04(10-12) = 3510	[58]	KP-SB04(10-12) = 3510	[5]	Weston 2012
	Deep	KP-SB04(14-16) = 894	[58]	KP-SB04(14-16) = 894	[5]	Weston 2012
	Deep	KP-SB05(11-13) =3590	[58]	KP-SB05(11-13) =3590	[5]	Weston 2012
	Deep	KP-SB05(14-16) = 338	[58]	KP-SB05(14-16) = 338	[5]	Weston 2012
	Deep	KP-SB06(10-12) = 4230	[58]	KP-SB06(10-12) = 4230	[5]	Weston 2012
	Deep	KP-SB06(14-16) = 1220	[58]	KP-SB06(14-16) = 1220	[5]	vveston 2012
	Deep	KP-3B07(6-10) = 68.3	႞၁၀]	RP-3B07(6-10) = 08.3	[0]	EDI 2018
	Deep	B-2 (6-9) = 11	[0 46]	B-2(6-9) = 11	[0.28]	BEI 2010
	Deep	B-4 (6-9) = 10	[0.46]	B-4 (6-9) = 10	[0.28]	BEI 2010
	Deep	B-5 (3-6) = 26	[0.46]	B-5 (3-6) = 26	[0.28]	BEI 2010
	Deep	B-5 (6-9) = 44.2	[0.46]	B-5 (6-9) = 44.2	[0.28]	BEI 2010
Vinyl Chloride	Deep	KP-SB02(18-20) = 3	[0.46]	KP-SB02(18-20) = 3	[0.28]	Weston 2012
	Deep			KP-SB04(14-16) = 0.41	[0.28]	Weston 2012
	Deep			KP-SB05(11-13) = 0.38	[0.28]	Weston 2012
	Deep	KP-SB06(10-12) = 0.58	[0.46]	KP-SB06(10-12) = 0.58	[0.28]	Weston 2012
	Deep	KP-SB06(14-16) = 0.49	[0.46]	KP-SB06(14-16) = 0.49	[0.28]	Weston 2012
	Deep	KP-SB07(8-10) = 2	[0.46]	KP-SB07(8-10) = 2	[0.28]	Weston 2012
Semivolatile Organic Com	pounds	P = 1 (0, 2) = 2 42	14.41			DEI 2010
	Shallow	B-1(0-3) = 2.42 B-4(0-3) = 1.28	[1.1]			BEI 2010
	Deep	B-4(3-6) = 2.83	[1.1]			BEI 2010
	Shallow	B-6 (0-3) = 2.42	[1.1]			BEI 2010
Banza (a) anthroacha	Shallow	B-7 (0-3) = 1.76	[1.1]			BEI 2010
Benzo(a)anthiacene	Deep	B-7 (3-6) = 1.65	[1.1]			BEI 2010
	Shallow	B-8 (0-3) = 9.27	[1.1]			BEI 2010
	Deep	KP-SB10(3-5) = 2.4	[1.1]			Weston 2012
	Deep	KP-SB10(12-14) = 2.2	[1.1]	-		Weston 2012
	Deep	R^{-} -3D10(12-14)D = 2.1 B-1 (0-3) - 4 58	[1.1]			BEL 2010
	Deen	B = 4 (3-6) = 4.30 B-4 (3-6) = 2.77	[1.3]	-		BEI 2010
	Shallow	B-6 (0-3) = 2.21	[1.3]			BEI 2010
	Shallow	B-7 (0-3) = 1.91	[1.3]			BEI 2010
Benzo(a)pyrene	Deep	B-7 (3-6) = 1.88	[1.3]			BEI 2010
	Shallow	B-8 (0-3) = 9.36	[1.3]			BEI 2010
	Deep	KP-SB10(3-5) = 2.2	[1.3]			Weston 2012
	Deep	KP-SB10(12-14) = 2	[1.3]			Weston 2012
	Deep	R^{-} -3810(12-14)D = 1.9 B-1 (0-3) = 6.29	[1.3]			REL2010
	Shallow	B-1(0-3) = 0.23 B-4(0-3) = 1.57	[1.5]			BEI 2010
	Deen	B-4(3-6) = 3.48	[1.5]			BEI 2010
	Shallow	B-6 (0-3) = 2.67	[1.5]			BEI 2010
Donzo/b)fluorozákor	Shallow	B-7 (0-3) = 2.24	[1.5]			BEI 2010
Denzo(D)nuoranthene	Deep	B-7 (3-6) = 2.03	[1.5]			BEI 2010
	Shallow	B-8 (0-3) = 11.5	[1.5]			BEI 2010
	Deep	KP-SB10(3-5) = 2.4	[1.5]			Weston 2012
	Deep	KP-SB10(12-14) = 1.9	[1.5]			Weston 2012
	Deep	KP-SB10(12-14)D = 2.1	[1.5]			vveston 2012

Table 3-1 Summary of Soil Tier 1 Residential Remediation Objective Exceedances 1807-1815 N. Kimball Avenue, Chicago, Illinois

			Residenti	al	
Constituents	Depth	Ingestion	Residentia	Inhalation	Reference
	Shallow	B-1 (0-3) = 0.25	[0.2]		BEI 2010
	Shallow	B-8 (0-3) = 0.35	[0.2]		BEI 2010
Dibenz(a,h)anthracene	Deep	KP-SB10(3-5) = 0.77	[0.2]		Weston 2012
	Deep	KP-SB10(12-14) = 0.66	[0.2]		Weston 2012
	Deep	KP-SB10(12-14)D = 0.66	[0.2]		Weston 2012
	Shallow	B-1 (0-3) = 3.45	[0.86]		BEI 2010
	Deep	B-4 (3-6) = 1.43	[0.86]		BEI 2010
	Shallow	B-6 (0-3) = 0.88	[0.86]		BEI 2010
	Deep	B-7 (3-6) = 0.87	[0.86]		BEI 2010
Indeno(1,2,3-cd)pyrene	Shallow	B-8 (0-3) = 4.29	[0.86]		BEI 2010
	Deep	KP-SB10(3-5) = 1.4	[0.86]		Weston 2012
	Deep	KP-SB10(12-14) = 1.1	[0.86]		Weston 2012
	Deep	KP-SB10(12-14)D = 1.2	[0.86]		Weston 2012
Metals					
Antimony	Deep	B-4 (3-6) = 59	[31]		BEI 2010
	Shallow	B-4 (0-3) = 15	[13]		BEI 2010
	Deep	B-4 (3-6) = 18	[13]		BEI 2010
Arsenic	Deep	B-5 (3-6) = 17	[13]		BEI 2010
	Shallow	B-6 (0-3) = 14	[13]		BEI 2010
	Deep	B-6 (3-6) = 29	[13]		BEI 2010
Iron	Deep	B-4 (3-6) = 86,000	[55,000 ^ª]		BEI 2010
	Deep	B-4 (3-6) = 1,100	[400]		BEI 2010
Lood	Deep	B-5 (3-6) = 840	[400]		BEI 2010
Leau	Shallow	B-6 (0-3) = 910	[400]		BEI 2010
	Deep	B-6 (3-6) = 2,800	[400]		BEI 2010

[Tier 1 RO], [Chicago Background value]

Exceeds Tier 1 RO

Exceeds Tier 1 RO, saturated sample based on observed water table

^a NonTaco table value Shallow (0-3 ft bgs) Deep (> 3 ft bgs)

Table 3-2 Summary of Soil Tier 1 Construction Worker Remediation Objective Exceedances 1807-1815 N. Kimball Avenue, Chicago, Illinois

			Construct	ion Worker		
Constituents	Depth	Ingestion		Inhalation		Reference
Volatile Organic Compounds						
1,1-Dichloroethene	Deep			B-5 (9-12) = 4	[3.0]	BEI 2010
Chloroform	Deep			B-2 (9-12) = 6.13	[0.76]	BEI 2010
	Deep	DB-09 (11-13) = 2300	[1200]	DB-09 (11-13) = 2300	[12]	EDI 2018
	Deep	DB-11 (12-14) = 2300	[1200]	DB-11 (12-14) = 2300	[12]	EDI 2018
	Deep			DB-17 (12-14) = 980	[12]	EDI 2018
	Deep	DB-18 (10-12) = 3200	[1200]	DB-18 (10-12) = 3200	[12]	EDI 2018
	Deep			B-2 (6-9) = 599	[12]	BEI 2010
	Deep			B-2 (9-12) = 408	[12]	BEI 2010
	Deep			B-5 (3-6) = 73	[12]	BEI 2010
Trichloroethene	Deep			KP-SB02(18-20) = 803	[12]	Weston 2012
	Deep	KP-SB04(10-12) = 3510	[1200]	KP-SB04(10-12) = 3510	[12]	Weston 2012
	Deep			KP-SB04(14-16) = 894	[12]	Weston 2012
	Deep	KP-SB05(11-13) =3590	[1200]	KP-SB05(11-13) =3590	[12]	Weston 2012
	Deep			KP-SB05(14-16) = 338	[12]	Weston 2012
	Deep	KP-SB06(10-12) = 4230	[1200]	KP-SB06(10-12) = 4230	[12]	Weston 2012
	Deep	KP-SB06(14-16) = 1220	[1200]	KP-SB06(14-16) = 1220	[12]	Weston 2012
	Deep		- · ·	KP-SB07(8-10) = 68.3	[12]	Weston 2012
	Deep			B-2 (6-9) = 11	[1.1]	BEI 2010
	Deep			B-4 (6-9) = 10	[1.1]	BEI 2010
	Deep			B-5 (3-6) = 26	[1.1]	BEI 2010
Vinyi Chioride	Deep			B-5 (6-9) = 44.2	[1.1]	BEI 2010
	Deep			KP-SB02(18-20) = 3	[1.1]	Weston 2012
	Deep			KP-SB07(8-10) = 2	[1.1]	Weston 2012
Metals		•				
	Deep	B-4 (3-6) = 1,100	[700]			BEI 2010
Land	Deep	B-5 (3-6) = 840	[700]			BEI 2010
Lead	Shallow	B-6 (0-3) = 910	[700]			BEI 2010
	Deep	B-6 (3-6) = 2,800	[700]			BEI 2010
	Deep			B-2 (3-6) =0.84	[0.1]	BEI 2010
	Shallow			B-4 (0-3) = 0.17	[0.1]	BEI 2010
	Deep			B-4 (3-6) = 0.38	[0.1]	BEI 2010
Mercury	Deep			B-5 (3-6) = 0.42	[0.1]	BEI 2010
-	Shallow			B-6 (0-3) = 0.82	[0.1]	BEI 2010
	Deep			B-6 (3-6) =3	[0.1]	BEI 2010
	Shallow			B-7 (0-3) = 0.15	[0.1]	BEI 2010

[Tier 1 RO] Exceeds Tier 1 RO Exceeds Tier 1 RO, saturated sample based on observed water table Shallow (0-3 ft bgs)

Deep (> 3 ft bgs)

Table 3-3 Summary of Soil Component of Groundwater Ingestion Remediation Objective Exceedances 1807-1815 N. Kimball Avenue, Chicago, Illinois

		Soil Component of Groundwat	ter Ingestion	
Constituents	Depth	Class II		Reference
Volatile Organic Compound	ls			
	Deep	B-2 (6-9) = 0.2	[0,17]	BEI 2010
Benzene	Deep	B-5(3-6) = 0.4	[0.17]	BEI 2010
Chloroform	Deep	B-2(9-12) = 6.13	[2,9]	BEI 2010
	Deep	B-4(6-9) = 2	[0.3]	BEI 2010
	Deep	B-5(9-12) = 4	[0.3]	BEI 2010
1.1-Dichloroethene	Deep	KP-SB04(10-12) = 0.35	[0.3]	Weston 2012
.,. 2.0	Deep	KP-SB05(11-13) = 0.32	[0.3]	Weston 2012
	Deep	KP-SB06(10-12) = 1.2	[0.3]	Weston 2012
	Deep	DB-18(10-12) = 31	[1.1]	EDI 2018
	Deep	B-2(6-9) = 368	[1 1]	BEI 2010
	Deep	B-2(9-12)=1.16	[1 1]	BEI 2010
	Deep	B-4(6-9) = 872	[1.1]	BEI 2010
	Deep	B-4(9-12) = 20	[1.1]	BEI 2010
	Deep	B-5(3-6) = 8	[1.1]	BEI 2010
	Deep	$B_{-5}(6_{-9}) = 942$	[1.1]	BEI 2010
cis-1 2-Dichloroethene	Deep	$B_{-5}(0, 12) = 990$	[1.1]	BEI 2010
	Deep	KP-SB02(18-20) - 56.6	[1.1]	Weston 2012
	Deep	KP-SB04(10-12) = 2.6	[1.1]	Weston 2012
	Deep	KP-SB04(10-12) = 2.0	[1.1]	Weston 2012
	Deep	KP-SB06(10-12) = 22.2	[1.1]	Weston 2012
	Deep	KP-SB00(10-12) = 22.2	[1.1]	Weston 2012
	Deep	KP-SB00(14-10) = 22.4 KP-SB07(8-10) = 31.2	[1.1]	Weston 2012
	Deep	KP-SB07(6-10) = 31.2 KP-SB08(15-17) = 28.1	[1.1]	Weston 2012
	Deep	R = 3600(13-17) = 20.1	[1.1]	REL2010
	Deep	B = 2(0-3) = 1	[0.3]	BEI 2010
	Deep	B-4(0-9) = 0 $B_{-5}(2-6) = 0.5$	[0.3]	BEI 2010
	Deep	B = 5(3 = 0.3) = 0.3	[0.3]	BEI 2010
Tetrachloroethene	Deep	B-3(9-12) = 14 KD SP04(10(12) - 4(1)	[0.3]	Wester 2012
	Deep	KF - 3B04(10 - 12) = 4.1	[0.3]	Weston 2012
	Deep	KP = 3005(11-13) = 2.7	[0.3]	Weston 2012
	Deep	KF - 3B00(10 - 12) = 3.0	[0.3]	Weston 2012
	Deep	RF-3600(14-16) =0.62	[0.3]	REL2010
	Deep	B-2(0-9) = 0	[3.4]	BEI 2010
trans-1,2-Dichloroethene	Deep	B-4 (6-9) = 15	[3.4]	BEI 2010
	Deep	B-5(0-9) = 7.34	[3.4]	BEI 2010
	Deep	D-3(9-12) = 14 DB 00(44.42) = 2200	[3.4]	EI 2010
	Deep	DB-09(11-13) = 2300	[0.3]	EDI 2018
	Deep	DB-11(12-14) = 2300	[0.3]	EDI 2018
	Deep	DB-17(12-14) = 980	[0.3]	EDI 2018
	Deep	DB-18(10-12) = 3200	[0.3]	EDI 2018
	Deep	B-2 (6-9) = 599	[0.3]	BEI 2010
	Deep	B-2 (9-12) = 408	[0.3]	BEI 2010
	Deep	KP-SB01 (18-20) = 8.2	[0.3]	Weston 2012
	Deep	KP-SB01(18-20)D = 9.6	[0.3]	Weston 2012
T data and a sec	Deep	B-3 (6-9) =2	[0.3]	BEI 2010
Irichioroethene	Deep	B-5 (3-6) = 73	[0.3]	BEI 2010
	Deep	B-6 (3-6) = 1	[0.3]	BEI 2010
	Deep	KP-SB02(18-20) = 803	[0.3]	Weston 2012
	Deep	KP-SB04(10-12) = 3510	[0.3]	VVeston 2012
	Deep	KP-SB04(14-16) = 894	[0.3]	VVeston 2012
	Deep	KP-SB05(11-13) =3590	[0.3]	Weston 2012
	Deep	KP-SB05(14-16) = 338	[0.3]	Weston 2012
	Deep	KP-SB06(10-12) = 4230	[0.3]	Weston 2012
	Deep	KP-SB06(14-16) = 1220	[0.3]	Weston 2012
	Deep	KP-SB07(8-10) = 68.3	[0.3]	Weston 2012

Table 3-3 Summary of Soil Component of Groundwater Ingestion Remediation Objective Exceedances 1807-1815 N. Kimball Avenue, Chicago, Illinois

		Soil Component of Groundwate	er Ingestion	
Constituents	Depth	Class II		Reference
	Deep	DB-06 (14-16) = 0.29	[0.07]	EDI 2018
	Deep	B-2 (6-9) = 11	[0.07]	BEI 2010
	Deep	B-2 (9-12) = 0.16	[0.07]	BEI 2010
	Deep	B-4 (6-9) = 10	[0.07]	BEI 2010
	Deep	B-4 (9-12) = 0.2	[0.07]	BEI 2010
	Deep	B-5 (3-6) = 26	[0.07]	BEI 2010
	Deep	B-5 (6-9) = 44.2	[0.07]	BEI 2010
Vipyl Chlorido	Deep	KP-SB02(18-20) = 3	[0.07]	Weston 2012
Viriyi Chionde	Deep	KP-SB04(10-12) = 0.088	[0.07]	Weston 2012
	Deep	KP-SB04(14-16) = 0.41	[0.07]	Weston 2012
	Deep	KP-SB05(11-13) = 0.38	[0.07]	Weston 2012
	Deep	KP-SB05(14-16) = 0.23	[0.07]	Weston 2012
	Deep	KP-SB06(10-12) = 0.58	[0.07]	Weston 2012
	Deep	KP-SB06(14-16) = 0.49	[0.07]	Weston 2012
	Deep	KP-SB07(8-10) = 2	[0.07]	Weston 2012
	Deep	KP-SB08(15-17) = 0.14	[0.07]	Weston 2012
Semivolatile Organic Com	oounds			
Benzo(a)anthracene	Shallow	B-8 (0-3) = 9.27	[8]	BEI 2010
Metals				
Antimony	Deep	B-4 (3-6) = 59	[20]	BEI 2010
Anuillolly	Deep	B-5 (3-6) = 26	[20]	BEI 2010
Lead	Deep	B-6 (3-6) = 2,800, pH 8.5	[1420]	BEI 2010
Selenium	Deep	B-2 (3-6) = 3, pH 8.1	[2.4]	BEI 2010

[Tier 1 RO] Exceeds Tier 1 RO Exceeds Tier 1 RO, saturated sample based on observed water table Shallow (0-3 ft bgs) Deep (> 3 ft bgs)

Table 4-1 Summary of Groundwater Ingestion Remediation Objective Exceedances 1807-1815 N. Kimball Avenue, Chicago, Illinois

	1			
Constituents	Sample Date	Groundwater Ingestio Class II	n	Deference
Constituents				Reference
Volatile Organic Compound	ds			
Chloroform	8/10/2010	TMW-1 = 0.64	[0.001]	BEI 2010
Chlorolonn	6/1/2012	TMW-1/KP-MW01 = 0.0098	[0.001]	Weston 2012
1,1-Dichloroethene	11/9/2018	KPMW02 = 4.4	[0.035]	EDI 2018
1,2-Dichloroethane	11/9/2018	KPMW02 = 0.030	[0.025]	EDI 2018
aia 1.2 Diablaraathana	11/9/2018	MW-6 = 0.50	[0.2]	EDI 2018
cis-1,2-Dichloroethene	11/9/2018	KPMW02 = 69	[0.2]	EDI 2018
Tetrachloroethene	11/9/2018	KPMW02 = 0.10	[0.025]	EDI 2018
trans-1,2-Dichloroethene	11/9/2018	KPMW02 = 6.3	[0.5]	EDI 2018
1,1,2-Trichloroethane	11/9/2018	KPMW02 = 0.13	[0.05]	EDI 2018
	11/9/2018	MW-5 = 0.033	[0.025]	EDI 2018
	11/9/2018	MW-6 = 0.26	[0.025]	EDI 2018
Trichloroethene	8/10/2010	TMW-1 = 4	[0.025]	BEI 2010
	6/1/2012	TMW-1/KP-MW01 =0.22	[0.025]	Weston 2012
	11/9/2018	KPMW02 = 350	[0.025]	EDI 2018
	11/9/2018	MW-6 =0.062	[0.01]	EDI 2018
Vinyl Chlorido	8/10/2010	TMW-1 = 0.12	[0.01]	BEI 2010
Viriyi Chionde	6/1/2012	TMW-1/KP-MW01 =0.022	[0.01]	Weston 2012
	11/9/2018	KPMW02 = 7.4	[0.01]	EDI 2018
Metals				
Iron	6/1/2012	TMW-1/KP-MW01 =10.9	[5]	Weston 2012

All units mg/L

Most recent groundwater data evaluated for each location [Tier 1 RO]

Exceeds Tier 1 RO

Table 4-2 Summary of Groundwater Indoor Inhalation Remediation Objective Exceedances 1807-1815 N. Kimball Avenue, Chicago, Illinois

Constituents	Sample Date	Indoor Inhalation R Objective - Diffu Advection Res	Reference	
Volatile Organic Compound	ls			
Trichloroethene	11/9/2018	KPMW02 = 350	[0.34]	EDI 2018
Vipyl Chlorido	11/9/2018	MW-6 =0.062	[0.028]	EDI 2018
Viriyi Chionde	11/9/2018	KPMW02 = 7.4	[0.028]	EDI 2018

All units mg/L

Most recent groundwater data evaluated for each location [Tier 1 RO] Exceeds Tier 1 RO

Table 5 Summary of Soil Gas Remediation Objective Exceedances 1807-1815 N. Kimball Avenue, Chicago, Illinois

Constituents	Sample Date	Residential Outdoor Inhalation	Indoor Inhalation Remediation Objecti Difffusion and Advec Residential	ve - tion	Reference
Volatile Organic Compoun	ds				
	8/21/2012		SV-01 = 17	[1.5]	Terracon 2013
Trichloroethene	8/21/2012		SV-04/SV-04 DUP = 4.9	[1.5]	Terracon 2013
	11/8/2018		SV-09 = 110	[1.5]	EDI 2018
	8/21/2012		SV-04/SV-04 DUP = 1.6	[0.29]	Terracon 2013
Viriyi Chionde	11/8/2018		SV-09 = 52	[0.29]	EDI 2018

All units mg/m³

[Tier 1 RO] 35 IAC 742 Appendix B Tables G and H Exceeds Tier 1 RO

Table 6 Summary of Csat Exceedances 1807-1815 N. Kimball Avenue, Chicago, Illinois

				Client Sample ID :	DB091113	DB111214	DB171214	DB181012	KP-SB02(18-20)
				Boring Location :	DB-09	DB-11	DB-17	DB-18	KP-SB02
				Sample Interval :	11-13	12-14	12-14	10-12	18-20
				Date Collected :	11/05/2018	11/05/2018	11/06/2018	11/07/2018	2012
		Csat	Site Spe	ecific Csat*					
	Outdoor	SCCI	SCGI	SCGI					
Analyte	Inhalation	3001	Clayey Sand	Silty Clay					
Trichloroethene	1200	650	700	1000	2,300	2,300	980	3,200	803

				Client Sample ID :	KP-SB04(10-12)	KP-SB04(14-16)	KP-SB05(11-13)	KP-SB06(10-12)	KP-SB06(14-16)
				Boring Location :	KP-SB04	KP-SB04	KP-SB05	KP-SB06	KP-SB06
				Sample Interval :	10-12	14-16	11-13	10-12	14-16
				Date Collected :	2012	2012	2012	2012	2012
		Csat	Site Spe	ecific Csat*					
	Outdoor	8001	SCGI	SCGI					
Analyte	Inhalation	3001	Clayey Sand	Silty Clay					
Trichloroethene	1200	650	700	1000	3,510	894	3,590	4,230	1,220

Notes:

NA = Not applicable

SCGI = Soil Component of the Groundwater Ingestion

Csat = Soil Saturation Concentration

Shaded Values exceeded Csat

Values that exceed Csat for Outdoor inhalation are shown in **Bold.**

Results in mg/kg

*Additional details regarding site specific Csat calculations are provided in Appendix E.

Table 7 Summary of Tier 2 Residential Remediation Objective Exceedances 1807-1815 N. Kimball Avenue, Chicago, Illinois

	Residential		
Constituents	Ingestion		Reference
Semivolatile Organic Compo	unds		
•	B-1 (0-3) = 2.42	[1.1, 8,5]	BEI 2010
	B-4 (0-3) = 1.28	[1.1, 8.5]	BEI 2010
	B-4 (3-6) = 2.83	[1.1, 8,5]	BEI 2010
- /> -	B-6 (0-3) = 2.42	[1.1, 8,5]	BEI 2010
	B-7 (0-3) = 1.76	[1.1, 8,5]	BEI 2010
Benzo(a)anthracene	B-7 (3-6) = 1.65	[1.1, 8,5]	BEI 2010
	B-8 (0-3) = 9.27	[1.1, 8,5]	BEI 2010
	KP-SB10(3-5) = 2.4	[1.1, 8,5]	Weston 2012
	KP-SB10(12-14) = 2.2	[1.1, 8.5]	Weston 2012
	KP-SB10(12-14)D = 2.1	[1.1, 8,5]	Weston 2012
	B-1 (0-3) = 4.58	[1.3, 0.85]	BEI 2010
	B-4 (3-6) = 2.77	[1.3, 0.85]	BEI 2010
	B-6 (0-3) = 2.21	[1.3, 0.85]	BEI 2010
	B-7 (0-3) = 1.91	[1.3, 0.85]	BEI 2010
Benzo(a)pyrene	B-7 (3-6) = 1.88	[1.3, 0.85]	BEI 2010
	B-8 (0-3) = 9.36	[1.3, 0.85]	BEI 2010
	KP-SB10(3-5) = 2.2	[1.3, 0.85]	Weston 2012
	KP-SB10(12-14) = 2	[1.3, 0.85]	Weston 2012
	KP-SB10(12-14)D = 1.9	[1.3, 0.85]	Weston 2012
	B-1 (0-3) = 6.29	[1.5, 8.5]	BEI 2010
	B-4 (0-3) = 1.57	[1.5, 8.5]	BEI 2010
	B-4 (3-6) = 3.48	[1.5, 8.5]	BEI 2010
	B-6 (0-3) = 2.67	[1.5, 8.5]	BEI 2010
Panza(h)fluaranthana	B-7 (0-3) = 2.24	[1.5, 8.5]	BEI 2010
Benzo(b)nuorantinene	B-7 (3-6) = 2.03	[1.5, 8.5]	BEI 2010
	B-8 (0-3) = 11.5	[1.5, 8.5]	BEI 2010
	KP-SB10(3-5) = 2.4	[1.5, 8.5]	Weston 2012
	KP-SB10(12-14) = 1.9	[1.5, 8.5]	Weston 2012
	KP-SB10(12-14)D = 2.1	[1.5, 8.5]	Weston 2012
	B-1 (0-3) = 0.25	[0.2, 0.85]	BEI 2010
	B-8 (0-3) = 0.35	[0.2, 0.85]	BEI 2010
Dibenz(a,h)anthracene	KP-SB10(3-5) = 0.77	[0.2, 0.85]	Weston 2012
	KP-SB10(12-14) = 0.66	[0.2, 0.85]	Weston 2012
	KP-SB10(12-14)D = 0.66	[0.2, 0.85]	Weston 2012
	B-1 (0-3) = 3.45	[0.86, 8.5]	BEI 2010
	B-4 (3-6) = 1.43	[0.86, 8.5]	BEI 2010
	B-6 (0-3) = 0.88	[0.86, 8.5]	BEI 2010
Indeno(1.2.3-cd)nyrene	B-7 (3-6) = 0.87	[0.86, 8.5]	BEI 2010
indeno(1,2,0-00)pyrene	B-8 (0-3) = 4.29	[0.86, 8.5]	BEI 2010
	KP-SB10(3-5) = 1.4	[0.86, 8.5]	Weston 2012
	KP-SB10(12-14) = 1.1	[0.86, 8.5]	Weston 2012
	KP-SB10(12-14)D = 1.2	[0.86, 8.5]	Weston 2012

[Tier 1 RO], [Chicago Background value, Tier 2 RO] Exceeds Tier 1 and 2 RO

^a NonTaco table value

Table 8Summary of Proposed Remedial Action1807-1815 N. Kimball Avenue, Chicago, Illinois

Constituents	Sample Type	Remaining Concern	Proposed Remedial Action	
Trichloroethene	Deep Soil (> 3ft bgs)	Csat Exceedances	Insitu chemical oxidation (soil mixing) remediation	
Chlorinated VOCs	Deep Soil (> 3ft bgs)	Residential, soil component of the groundwater ingestion (SCGI), construction worker, groundwater ingestion, and indoor inhalation RO Exceedances	Remaining exceedances after ISCO remediation will be addressed with engineered barriers and institutional controls.	
Benzo(a)anthracene	Shallow (0-3 ft)	Residential Indestion RO Exceedances	Engineered Barrier	
Benzo(a)pyrene	Shallow (0-3 ft) Deep Soil (> 3ft bgs)			
	Shallow (0-3 ft)			
Lead, Mercury	Deep Soil (> 3ft bgs)	Construction Worker RO Exceedances	Construction Worker institutional control applied to the Site	
Benzo(a)pyrene	Shallow (0-3 ft)	SCCI Exceedances	Institutional Control to rely on City Groundwater Ordinance to	
Antimony,Lead, Selenium	Deep Soil (> 3ft bgs)		exclude GW Ingestion route	
Iron	Groundwater (KP- MW01)	Groundwater Ingestion Exceedance	Institutional Control to rely on City Groundwater Ordinance to exclude GW Ingestion route	

AECOM

Figures

at Hand

Legend

Industrial/Commercial

Parks and Open Space

Residential

Document Path: \\USWRV2PFPSW001.na.aecomnet.com\Projects\Projects\CHICAGO CITY OF\Projects\60623205-AIS N Kimball 2020\900-WorkingDocs-CAD\GIS\MXD\Fig1_SiteBasemap_20201027.mxd

-			
0 10 20			
LegendASoil Sample Location#Soil Vapor PointDGroundwater Monitoring WellDTemporary Monitoring WellRemediation Site Boundary			
NORTH KIMBALL BROWNFIELD SITE			
1807 - 1815 N. KIMBALL AVENUE CHICAGO, ILLINOIS FIGURE 3 SOIL SAMPLE AND			
Scoundwater well location ma 3/18/2021 NO: 60623205 NBY: CHK'D BY: MH AS SHOWN Shows a structure for the stru	P		

			Ν			
	1.38					
199		0 10 20				
	12.	Feet				
	23.	Legend				
	200	 Soil Sample Location 				
	1.00	Deep (> 3 ft) Tier 1 Residential				
100	100	lnges VOCs	ition SRO Exceedanc	e:		
	SIL.	Reme	ediation Site Boundary	y		
12-14)		Notes:	dichlorothoro			
2300		PCE = tetrachloro	-aichiorethene bethene			
		TCE= trichloroethene VC = vinvl chloride				
803		$KP_{S}R06 (10.12) = Sample Location (depth in fact)$				
3		Concentrations shown in mg/kg				
	-					
B-5 (3-6)	1	Analyte	Tier 1 Residential			
VC 26	2		Ingestion SRO			
B-5 (6-9)	1	cis-DCE	780			
-DCE 942 VC 44.2	2	PCE	12			
B-5 (9-12)	36	TCE	58			
-DCE 990)	VC	0.46			
-SB06 (10-12	2)					
CE 423	0					
VC 0.58	<u>}</u>					
CE 1220	0					
VC 0.49)					
18						
15-15	100					
100	100					
1	1540	NORTH KIM	BALL BROWNFIELD	SITE		
6 22	129	1807 - 181 CH	15 N. KIMBALL AVEN ICAGO. ILLINOIS	UE		
	7.68					
- Josephered	The second	FIGURE 4-1 SOIL SAMPLES EXCEEDING TIER 1 RESIDENTIAL INGESTION SROS: VOCS				
1 6	14	DATE: 12/16/2020				
part of	42	JOB NO: 60623205	A=CO			
Chief .	2 10	DRAWN BY: CHK'D BY: HT MH	303 EAST WACKER DRIVE, SU CHICAGO, ILLINOIS 606	UITE 1400 01		
ook County GI	S Dept.	SCALE PHONE: (312) 373-7700 AS SHOWN FAX: (312) 373-6800				

A CONTRACTOR OF				
			N ▲	
		0	, , , , , , , , , , , , , , , , , , , ,	
		0	10 20	
			Feet	
1	Legend			
0-3)	🔶 S	Soil Sam	ple Location	
1.57	S	Shallow (0-3 ft) Tier 1	
0.25	🔶 R F	Residenti Exceedar	al Ingestion SRC)
3-6))een (> ?	3 ft)Tier 1 Reside	ntial
2.83	l – Ir	ngestion	SRO Exceedance	ce:
3.48	F	PAHs		
1.43	Remediation Site Boundary			
State Cold	Notes:			
	BAA = benzo BAP = benzo	o(a)anthra o(a)ovrene	icene e	
	BBF = benzo(b)fluoranthene			
	DAA = dibenz(a,h)anthracene IP = indeno(1,2,3-cd)pyrene			
) (10) Ca		nth in fact)
	Concentratio	ns shown	in mg/kg	ptn in feet)
			Residential	
		A	1 Coluction	
		Analyte	Ingestion SRO	
	·	BAA	Ingestion SRO	
		BAA BAP	Ingestion SRO 1.1 1.3	
1		BAA BAP BBF	Ingestion SRO 1.1 1.3 1.5 0.2	
		BAA BAP BBF DAA IP	Ingestion SRO 1.1 1.3 1.5 0.2 0.86	
-		BAA BAP BBF DAA IP	Ingestion SRO 1.1 1.3 1.5 0.2 0.86	
		BAA BAP BBF DAA IP	Ingestion SRO 1.1 1.3 1.5 0.2 0.86	
		BAA BAP BBF DAA IP	Ingestion SRO 1.1 1.3 1.5 0.2 0.86	
		BAA BAP BBF DAA IP	Ingestion SRO 1.1 1.3 1.5 0.2 0.86	
		BAA BAP BBF DAA IP	Ingestion SRO 1.1 1.3 1.5 0.2 0.86	
		BAA BAP BBF DAA IP	Ingestion SRO 1.1 1.3 1.5 0.2 0.86	
		BAA BAP BBF DAA IP	Ingestion SRO 1.1 1.3 1.5 0.2 0.86	
		BAA BAP BBF DAA IP	Ingestion SRO 1.1 1.3 1.5 0.2 0.86	SITE
	NORTH 1807 -	BAA BAP BBF DAA IP KIMBAL - 1815 N	Ingestion SRO 1.1 1.3 1.5 0.2 0.86 . L BROWNFIELI . KIMBALL AVEN	D SITE NUE
	NORTH 1807 -	Analyte BAA BAP BBF DAA IP IP KIMBAL - 1815 N CHICAG	Ingestion SRO	D SITE NUE
	NORTH 1807 -	HANAIIYTE BAA BAP BBF DAA IP IP KIMBAL - 1815 N CHICA(FIC	Ingestion SRO 1.1 1.3 1.5 0.2 0.86 IL BROWNFIELI KIMBALL AVEN GO, ILLINOIS GURE 4-2	D SITE NUE
	NORTH 1807 -	Analyte BAA BAP DAA IP IP KIMBAL - 1815 N CHICAC AMPLES	Ingestion SRO 1.1 1.3 1.5 0.2 0.86 IL BROWNFIELI KIMBALL AVEN GO, ILLINOIS GURE 4-2 SEXCEEDING T	D SITE IUE
	NORTH 1807 - SOIL SA RESIDEN	KIMBAL - 1815 N CHICA(AMPLES	Ingestion SRO 1.1 1.3 1.5 0.2 0.86 L BROWNFIELI KIMBALL AVEN GO, ILLINOIS GURE 4-2 S EXCEEDING T GESTION SROS	D SITE NUE TIER 1 S: PAHS
	NORTH 1807 - SOIL SA RESIDEN DATE: 12/16/20	KIMBAL - 1815 N CHICAC AMPLES	Ingestion SRO 1.1 1.3 1.5 0.2 0.86	D SITE NUE TIER 1 S: PAHS
	NORTH 1807 - SOIL SA RESIDEN DATE: 12/16/20 JOB NO: 60623205	KIMBAL OAA IP KIMBAL 1815 N CHICA(AMPLES ITIAL IN 020	Ingestion SRO 1.1 1.3 1.5 0.2 0.86	D SITE NUE TIER 1 S: PAHS
	NORTH 1807 - SOIL SJ RESIDEN DATE: 12/16/20 JOB NO: 60623205 DRAWN BY: CHKD HT M	KIMBAL DAA IP KIMBAL - 1815 N CHICA(AMPLES ITIAL IN D20 BY: H	Ingestion SRO 1.1 1.3 1.5 0.2 0.86	D SITE NUE TIER 1 S: PAHS

		0 10 Feet	20
4 (0-3) 15 4 (3-6) 59 18 86,000 1,100	Legend Soil S Shall Shall Exce Deep Inges Meta	Sample Locatio low (0-3 ft) Tier dential Ingestio eedance: Metals o (>3 ft) Tier 1 F stion SRO Exce Ils ediation Site Be	n 1 n SRO s Residential eedance: oundary
(3-6) 17 840	Notes: Sb = antimony As = arsenic Fe = iron Pb = lead KP-SB06 (10-12) Concentrations s) = Sample Loca shown in mg/kg	tion (depth in feet)
1	Analy Sb As	rte Tier 1 Resi Ingestion 31 13	dential SRO
-6 (0-3) 14 910 -6 (3-6) 29 29	Pb *Non-ta	aco table value	<u>0^</u>
2,000	NORTH KIN 1807 - 18 C⊦	IBALL BROWI 15 N. KIMBALI 1ICAGO, ILLIN	NFIELD SITE L AVENUE OIS
	SOIL SAM RESIDENTIAL	FIGURE 4-3 PLES EXCEEI INGESTION S	DING TIER 1 SROS: METALS
	12/14/2000		

	Legend Soil S Shall Shall Meta Deep Inges Meta Remo Notes: Pb = lead	N 0 10 20 Feet Sample Location low (0-3 ft) Tier 1 CW stion SRO Exceedance: Is 0 (> 3 ft) Tier 1CW stion SRO Exceedance: Is 0 (> 3 ft) Tier 1CW stion SRO Exceedance: Is ediation Site Boundary
0	B-4 (3-6) = Samp Concentrations s Analyte Pb	ble Location (depth in feet) hown in mg/kg Tier 1 CW Ingestion SRO 700
10		
	NORTH KIM 1807 - 18 CH	IBALL BROWNFIELD SITE 15 N. KIMBALL AVENUE IICAGO, ILLINOIS FIGURE 6-2
	SOIL SAMI CONSTRUC DATE: 12/16/2020 JOB NO:	TION WORKER INGESTION SROS: METALS
ook County GIS Dept.	60623205 DRAWN BY: CHK'D BY: CC MH SCALE AS SHOWN	303 EAST WACKER DRIVE, SUITE 1400 CHICAGO, ILLINOIS 60601 PHONE: (312) 373-6800 FAX: (312) 373-6800

		0 10 20 Feet
B-4 (3-6) Sb 59	Legend Soil S Deep Exce Rem	Sample Location (> 3 ft) Tier 1 SCGI SRO edance: Metals ediation Site Boundary
J J	Notes: Sb = antimon Pb = lead Se = Seleniu B-4 (8-9) = S Concentration	y m ample Location (depth in feet) ns shown in mg/kg
B-5 (3-6) Sb 26	Analyte Sb Pb Se	Tier 1 Soil Component of Groundwater Ingestion SRO 20 1420 2.4
Se Plan	1807 - 18 CH	15 N. KIMBALL AVENUE IICAGO, ILLINOIS
	SOIL SAMPLES EX OF THE GROUND	FIGURE 8-3 KCEEDING TIER 1 SOIL COMPONENT WATER INGESTION SROS: METALS
Cook County GIS Dept.	DATE: JOB NO: 60623205 DRAWN BY: HT SCALE AS SHOWN	AECOM 303 EAST WACKER DRIVE, SUITE 1400 CHICAGO, ILLINOIS 60601 PHONE: (312) 373-700 FAX: (312) 373-6800

Analyte	Class II Groundwater Ingestion GRO
CHL	0.001
1,1-DCE	0.035
1,2-DCA	0.025
cis-DCE	0.2
PCE	0.025
trans-DCE	0.5
1,1,2-TCA	0.05
TCE	0.025
VC	0.01

NORTH KIMBALL BROWNFIELD SITE 1807 - 1815 N. KIMBALL AVENUE CHICAGO, ILLINOIS

FIGURE 9-1 GROUNDWATER SAMPLES EXCEEDING TIER 1 GROUNDWATER INGESTION GROS: VOCS

DATE: **12/17/2020**

JOB NO: 60623205 DRAWN BY: CHK'D BY: HT MH SCALE AS SHOWN

303 EAST WACKER DRIVE, SUITE 1400 CHICAGO, ILLINOIS 60601 PHONE: (312) 373-7700 FAX: (312) 373-6800

		0	N 10 20 Feet	
	Legend Grou Tier Exce	undwa 1 GW eedan nediati	ter Monitoring Ingestion ce: Metals on Site	
	Notes: Fe = Iron Concentration	ns sho	wn in mg/L	
	Anal Fe	yte	Class II Groundwater Ingestion GRO 5	
	NORTH KIMBALL BROWNFIELD SITE 1807 - 1815 N. KIMBALL AVENUE CHICAGO, ILLINOIS			
	FIGURE 9-2 GROUNDWATER SAMPLES EXCEEDING TIER 1 GROUNDWATER INGESTION GROS: METALS			
< County GIS Dept.	DATE: JOB NO: 60623205 DRAWN BY: HT SCALE AS SHOWN	3	AECOM 03 EAST WACKER DRIVE, SUIT CHICAGO, ILLINOIS 6060 PHONE: (312) 373-7700 FAX: (312) 373-6800	FE 1400 1

			N		
and the second					
			0 10 20		
A Standard			Feet		
WW-06					
0.062					
1.00	Le	gend			
09	1	Ground	water Monitoring W	ell	
110	Tier 1 GW Indoor Inhalation Exceedance: VOCs				
52	▲ Soil Vapor Point				
	Tier 1 SG Indoor Inhalation				
A Designation		Exceed	lance: VOCs		
Republic The		Remea	liation Site Boundary	,	
	N	otes:			
SV-04	TCE = trichloroethene VC = vinvl chloride				
C 1.6					
V-04 DUP	Groundwater concentrations shown in mg/L Soil gas concentrations shown in mg/m3				
E 17					
C 7.9					
			lindoor inshistion		
and the second		Analyte	Indoor Inahlation Residential GRO		
1000		Analyte	Residential GRO (mg/L)		
		Analyte TCE	Residential GRO (mg/L)		
1		Analyte TCE VC	Indoor Inahlation Residential GRO (mg/L) 0.025 0.01		
-1		Analyte TCE VC	Indoor Inahlation Residential GRO (mg/L) 0.025 0.01		
-		Analyte TCE VC Analyte	Indoor Inahlation Residential GRO (mg/L) 0.025 0.01 Indoor Inahlation Residential		
		Analyte TCE VC Analyte	Indoor Inahlation Residential GRO (mg/L) 0.025 0.01 Indoor Inahlation Residential SGRO (mg/m ³)		
		Analyte TCE VC Analyte TCE	Indoor Inahlation Residential GRO (mg/L) 0.025 0.01 Indoor Inahlation Residential SGRO (mg/m ³) 1.5		
		Analyte TCE VC Analyte TCE VC	Indoor Inahlation Residential GRO (mg/L) 0.025 0.01 Indoor Inahlation Residential SGRO (mg/m ³) 1.5 0.29		
		Analyte TCE VC Analyte TCE VC	Indoor Inahlation Residential GRO (mg/L) 0.025 0.01 Indoor Inahlation Residential SGRO (mg/m ³) 1.5 0.29		
		Analyte TCE VC Analyte TCE VC	Indoor Inahlation Residential GRO (mg/L) 0.025 0.01 Indoor Inahlation Residential SGRO (mg/m ³) 1.5 0.29		
	NC	Analyte TCE VC Analyte TCE VC	Indoor Inahlation Residential GRO (mg/L) 0.025 0.01 Indoor Inahlation Residential SGRO (mg/m ³) 1.5 0.29	SITE	
	NC	Analyte TCE VC Analyte TCE VC ORTH KIMB/ 1807 - 1815 CHIC	Indoor Inahlation Residential GRO (mg/L) 0.025 0.01 Indoor Inahlation Residential SGRO (mg/m ³) 1.5 0.29 ALL BROWNFIELD N. KIMBALL AVENU AGO, ILLINOIS	SITE JE	
	NC	Analyte TCE VC Analyte TCE VC DRTH KIMB/ 1807 - 1815 CHIC	Indoor Inahlation Residential GRO (mg/L) 0.025 0.01 Indoor Inahlation Residential SGRO (mg/m ³) 1.5 0.29 ALL BROWNFIELD N. KIMBALL AVENU AGO, ILLINOIS	SITE JE	
	GROL	Analyte TCE VC Analyte TCE TCE VC DRTH KIMBA 1807 - 1815 CHIC INDWATER AND TIER 1 INDOC	Indoor Inahlation Residential GRO (mg/L) 0.025 0.01 Indoor Inahlation Residential SGRO (mg/m ³) 1.5 0.29 ALL BROWNFIELD N. KIMBALL AVENU AGO, ILLINOIS FIGURE 10 D SOIL GAS SAMPLES ED DR INHALATION ROS: VO	SITE JE (CEEDIN CS	
	NC GROU DATE:	Analyte TCE VC Analyte TCE VC DRTH KIMB/ 1807 - 1815 CHIC INDWATER AND TIER 1 INDOC	Indoor Inahlation Residential GRO (mg/L) 0.025 0.01 Indoor Inahlation Residential SGRO (mg/m ³) 1.5 0.29 ALL BROWNFIELD N. KIMBALL AVENU AGO, ILLINOIS FIGURE 10 D SOIL GAS SAMPLES EX DR INHALATION ROS: VO		
	ROL GROL DATE: JOB NO: 60	Analyte TCE VC Analyte TCE VC DRTH KIMB/ 1807 - 1815 CHIC INDWATER AND TIER 1 INDOC 2/17/2021 0623205	Indoor Inahlation Residential GRO (mg/L) 0.025 0.01 Indoor Inahlation Residential SGRO (mg/m ³) 1.5 0.29 ALL BROWNFIELD N. KIMBALL AVENU AGO, ILLINOIS FIGURE 10 D SOIL GAS SAMPLES ED DR INHALATION ROS: VO	SITE JE CS	
	ROL DATE: JOB NO: 60 DRAWN BY HT	Analyte TCE VC Analyte TCE VC DRTH KIMB/ 1807 - 1815 CHIC INDWATER AND TIER 1 INDOC 2/17/2021 0623205 CHKD BY: MH	Indoor Inahlation Residential GRO (mg/L) 0.025 0.01 Indoor Inahlation Residential SGRO (mg/m ³) 1.5 0.29 ALL BROWNFIELD N. KIMBALL AVENU AGO, ILLINOIS FIGURE 10 D SOIL GAS SAMPLES EX DR INHALATION ROS: VO	SITE JE (CEEDIN CS	

	Service Service	
KP-SB	04	
epth (ft bas)	TCE	
10-12	3510 J	
14-16	894 J	
		0
DD-U	TOF	
20-22	< 0.0000	
24 20	< 0.0000	Legend
B-	4	-
Depth (ft bgs	;) TCE	iempora
0-3		🕂 🕂 🕂 🕂
3-6		
0.12	0.005 U	🔺 🔺 Soil Vap
9-12	0.005 0	
DB	-06	
Depth (ft bg	s) TCE	🚽 🥚 TCE exc
14-16	0.25	
22-24	0.013	ICE Csa
DB	-08	Limit (8-2
Depth (ft bg	s) TCE	TCF Cs
11-13	0.016	
16-18	< 0.0048	
22-24	0.0071	Remedia
DB	-09	
Depth (ft bg	s) TCE]
11-13	<u>2,300</u>]
16-18	0.06]
22-24	< 0.0046	
12.10	The second second	
DB-	12	
Depth (ft bgs) TCE	
12-14	< 0.0051	
12-14	< 0.0050	
18-20	< 0.0051	
20-28	< 0.0049	Note [,]
DB-11		1. The locations of prev
(ft bas) T	CE	monitoring wells and so
$\frac{(100 \text{ gc})}{2}$	300	a. Reports prepared by
3-20 < 0.	.0050	2021 CSIR/ROR/RAP
6-28 < 0.	.0044	 b. Additional investigati October 2018, Soil bori
All Long	1983	vapor points included S
/KP-SB02		Results that exceed
bgs) TCE		are shown in red/bold.
		are undernined
73	321	4. ft bgs = feet below g
0.005	U	5 sample not collecte
0.005	U	
0 803	<u>」</u>	
2. 124	- 18 C	
		NORTH KIMBAL
1. 1.	87.00	1807 - 1815 N
	1.24	CHICA
306	1.000	
TCE	B. 10	SUMMARY OF TOF
<u>4,230</u>	and the	PROPOSED TOF
1,220		
		3/23/2021
C Street		JOB NO:
The second	1.1.1.4	00023205 DRAWN BY CHK'D BY
Little 1	de la Composition	HT MH
Cook Count	y GIS Dept.	SCALE

303 EAST WACKER DRIVE, SUITE 1400 CHICAGO, ILLINOIS 60601 PHONE: (312) 373-7700 FAX: (312) 373-6800

	-
	0 10 20
	1001
Legend	
A Soil	Sample Location
Res Exce	idential Inhalation RO
Resi	idential Ingestion RO
Туре	
Pote Inha	ential Engineered Barrier - lation
Pote	ential Engineered Barrier - estion
TCE Csat Re	emediation Area
	Csat Remediation Area t (8-16 ft bgs)
TCE	Csat Remediation Area t (8-20 ft bgs)
Remediation Site Boundary	
Note: 1. The locations of previously installed soil borings, monitoring wells and soil vapor points are based on	
a. Reports prepared by other firms as documented in the 2021 CSIR/ROR/RAP	
b. Additional investigation completed by AECOM/EDI in October 2018. Soil borings included DB-1 to DB-22 and soil vanor points included SV-7_SV-8_SV-9 and SV-10	
2. ft bgs = feet below ground surface	
NORTH KIMBALL BROWNFIELD SITE 1807 - 1815 N. KIMBALL AVENUE CHICAGO, ILLINOIS	
SUMMARY OF RESIDENTIAL RO EXCEEDANCES AND POTENTIAL ENGINEERED BARRIERS	
DATE: 3/23/2021 OB NO:	ΔΞΟΟΜ
60623205 RAWN BY: CHK'D BY:	
HT MH SCALE AS SHOWN	303 EAST WACKER DRIVE, SUITE 1400 CHICAGO, ILLINOIS 60601 PHONE: (312) 373-7700 FAX: (312) 373-6800